Шпаргалка по "Информатике"

Автор работы: Пользователь скрыл имя, 14 Марта 2011 в 11:24, шпаргалка

Краткое описание

Работа содержит ответы на вопросы к Государственному экзамену по предмету "Информатика".

Содержимое работы - 1 файл

ответы на госы по информатике.doc

— 251.50 Кб (Скачать файл)

30.Умнож.  чисел в форматах  с фикс-ой и  плав-ей запятой

Существует  несколько методов получения  произведения двух чисел; все они  дают результаты одинаковой точности, но требуют различных аппаратных затрат. Наиболее распространен метод, по которому произведение получается по следующей схеме: А=0.а1а2 …… аn – множимое, а В=0.b1b2…bn=(…(((bn*2-1+bn-1)2-1+bn-2)2-1+…+b2)2-1+b1)2-1 – множитель, произведение равно С=А*В=(…((bn*0.а1а2 …… аn)2-1+bn-1*0.а1а2 …… аn) 2-1 + …+b1 *0.а1а2 …… аn)2-1, что означает, что умножение начинается с младших разрядов множителя и на каждом шаге сдвигается вправо сумма частных произведений. При умножении чисел, представленных в прямом коде, знак произведения определяется отдельно от цифровой части как SgC=SgA Å SgB, а цифровая часть формируется на двоичном сумматоре прямого кода. Произведение получается в прямом коде. При умножении чисел в прямом коде результат имеет 2n разрядов, где n – число разрядов операндов, и может содержаться соответственно старшая часть произведения – в сумматоре и младшая часть – в освобождающихся разрядах регистра множителя. Для реализации умножения необходимы регистры (Рг) для хранения множимого А и множителя В, сумматор (СМ) и схема анализа разрядов множителя В. содержимое регистра В и сумматора представляется в соответствующей таблице. При умножении чисел, представленных в формате с плавающей запятой, мантиссы сомножителей перемножаются как числа с фиксированной запятой на двоичном сумматоре прямого кода, порядки чисел складываются на двоичных сумматорах обратного или дополнительного кодов. Результат умножения мантисс может иметь нарушение нормализации слева на один разряд; его следует нормализовать путем сдвига мантиссы на один разряд влево и понижения порядка результата на единицу. Необходима проверка сумматора порядков на переполнение и исчезновение порядка.

31. Деление чисел,  пред-ых в форматах  с фикс-ой и  плав-ей запятой

Деление двоичных чисел, представленных в формате  с фиксированной запятой, осуществляется двумя методами:с восстановлением остатков; без восстановления остатков, и представляет последовательные операции алгебраического сложения делимого и делителя, а затем остатков и сдвига. Деление выполняется на двоичных сумматорах дополнительного и обратного кодов. Результат получается в прямом коде. Знаковую и цифровую часть частного получают раздельно. Знак частного Sg C образуется по следующему правилу: SgC=SgA Å SgB Для определения цифр частного Сi используют следующие правила.

Правило 1. если делимое А и делитель В представлены в соответствии с таблицей

Sg A + + - -
Sg B + - + -
Представление операндов А+В А+В А+В А+В

Где В- изменение  знака операнда на противоположный, то необходимо сравнивать на каждом шаге знаки делимого А и остатков Аi и принимать Сi=1, если знаки совпали, и Сi=0 – при несовпадении знаков А и Аi.

Правило 2. если делимое А и делитель В представлены в соответствии с таблицей 5, то в очередной разряд частного Сi переписывается содержимое знакового разряда сумматора на каждом шаге.

SgA + + - -
SgB + - + -
Представление операндов А+В А+В А+В А+В

Необходимым условием выполнения операции деления чисел с фиксированной запятой является ½А½<½B½, В¹0, в противном случае – переполнение разрядной сетки сумматора. Для нахождения результата с точностью n разрядов надо найти (n+1)-й разряд частного, а затем округлить результат. Признаки окончания операции деления: достижение заданной точности; получение очередного остатка, равного нулю. Деление чисел в формате с плавающей запятой, имеет следующие особенности: ½mA½<½mB½; деление производится путем деления мантисс как чисел с фиксированной запятой на двоичных сумматорах обратного и дополнительного кодов и вычитания порядков в тех же кодах, после чего оценивается переполнение разрядной сетки сумматора порядков; ½mA½³½mB½; деление производится путем формального деления мантисс и вычитания порядков, после чего осуществляется нормализация результата сдвигом мантиссы вправо на один разряд и увеличением порядка на единицу, затем оценивается переполнение разрядной сетки сумматора порядков.

32.Понятие  и свойства алгоритмов

Алгоритмы могут описывать процессы преобразования самых разных объектов. Широкое распространение получили вычислительные алгоритмы, которые описывают преобразование числовых данных. Алгоритм - предписание, однозначно задающее процесс преобразования исходной информации в виде последовательности элементарных дискретных шагов, приводящих за конечное число их применений к результату

Основные  свойства алгоритмов следующие: 1.Понятность для исполнителя — исполнитель алгоритма должен понимать, как его выполнять. Имея алгоритм и произвольный вариант исходных данных, исполнитель должен знать, как надо действовать для выполнения этого алгоритма. 2.Дискpетность (прерывность, раздельность) — алгоритм должен представлять процесс решения задачи как

Информация о работе Шпаргалка по "Информатике"