Автор работы: Пользователь скрыл имя, 22 Ноября 2011 в 14:32, курсовая работа
В данной работе рассматривается что такое информация и данные, чем они различаются; как информация переходит в структурированные данные. Рассматриваются такие понятия, как «тип данных», «структура данных», «модель данных» и «база данных». В основной части работы приводится классификация структур данных, обширная информация о физическом и логическом представлении структур данных всех классов памяти ЭВМ: простых, статических, полустатических, динамических и нелинейных; а также, информация о возможных операциях над всеми перечисленными структурами.
Введение 2
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 3
Основные структуры данных 7
1. Простые структуры данных 7
2. Статические структуры данных 10
3. Полустатические структуры данных 14
4.Динамические структуры данных 17
5.Нелинейные структуры данных 21
Заключение 24
ПРАКТИЧЕСКАЯ ЧАСТЬ 25
Общая характеристика задачи 25
Описание алгоритма решения задачи 27
Список использованной литературы 33
Разреженные массивы. Разреженный массив - массив, большинство элементов которого равны между собой, так что хранить в памяти достаточно лишь небольшое число значений отличных от основного (фонового) значения остальных элементов. Различают два типа разреженных массивов:
1)
массивы, в которых
2)
массивы со случайным
Логическая структура: Множество - такая структура, которая представляет собой набор неповторяющихся данных одного и того же типа. Множество может принимать все значения базового типа. Базовый тип не должен превышать 256 возможных значений. Поэтому базовым типом множества могут быть byte, char и производные от них типы.
Физическая структура: Множество в памяти хранится как массив битов, в котором каждый бит указывает является ли элемент принадлежащим объявленному множеству или нет. Т.о. максимальное число элементов множества 256, а данные типа множество могут занимать не более 32-ух байт.
Числовые множества. Стандартный числовой тип, который может быть базовым для формирования множества - тип byte.
Символьные множества. Символьные множества хранятся в памяти также как и числовые множества. Разница лишь в том, что хранятся не числа, а коды ASCII символов.
Множество из элементов перечислимого типа. Множество, базовым типом которого есть перечислимый тип, хранится также, как множество, базовым типом которого является тип byte. Но, в памяти занимает место, которое зависит от количества элементов в перечислимом типе.
Множество от интервального типа. Множество, базовым типом которого есть интервальный тип, хранится также, как множество, базовым типом которого является тип byte. В памяти занимает место, которое зависит от количества элементов, входящих в объявленный интервал.
Запись - конечное упорядоченное множество полей, характеризующихся различным типом данных. Полями записи могут быть интегрированные структуры данных - векторы, массивы, другие записи. Записи являются чрезвычайно удобным средством для представления программных моделей реальных объектов предметной области, как правило, каждый такой объект обладает набором свойств, характеризуемых данными различных типов.
Таблица - сложная интегрированная структура. С физической точки зрения таблица представляет собой вектор, элементами которого являются записи. Логической особенностью таблиц является то, что доступ к элементам таблицы производится не по номеру (индексу), а по ключу - по значению одного из свойств объекта, описываемого записью-элементом таблицы. Ключ - это свойство, идентифицирующее данную запись во множестве однотипных записей. Ключ может включаться в состав записи и быть одним из её полей, но может и не включаться в запись, а вычисляться по положению записи. Таблица может иметь один или несколько ключей. Основной операцией при работе с таблицами является операция доступа к записи по ключу. Она реализуется процедурой поиска. Поскольку поиск может быть значительно более эффективным в таблицах, упорядоченных по значениям ключей, довольно часто над таблицами необходимо выполнять операции сортировки.
Иногда
различают таблицы с
Полустатические структуры данных характеризуются следующими признаками: они имеют переменную длину и простые процедуры её изменения; изменение длины структуры происходит в определенных пределах, не превышая какого-то максимального (предельного) значения.
Если
полустатическую структуру
Стек - такой последовательный список с переменной длиной, включение и исключение элементов из которого выполняются только с одной стороны списка, называемого вершиной стека. Применяются и другие названия стека - магазин и очередь, функционирующая по принципу LIFO (Last - In - First- Out - "последним пришёл - первым вышел").
Основные операции над стеком - включение нового и исключение элемента из стека. Полезными могут быть также вспомогательные операции: определение текущего числа элементов в стеке и очистка стека. Некоторые авторы рассматривают также операции включения/исключения элементов для середины стека, однако структура, для которой возможны такие операции, не соответствует стеку по определению.
Очередью FIFO (First - In - First- Out - "первым пришел - первым вышел") называется такой последовательный список с переменной длиной, в котором включение элементов выполняется только с одной стороны списка (эту сторону часто называют концом или хвостом очереди), а исключение - с другой стороны (называемой началом или головой очереди).
Основные операции над очередью - те же, что и над стеком - включение, исключение, определение размера, очистка, неразрушающее чтение.
Дек - особый вид очереди. Дек (от англ. deq - double ended queue, т.е очередь с двумя концами) - это такой последовательный список, в котором как включение, так и исключение элементов может осуществляться с любого из двух концов списка. Частный случай дека - дек с ограниченным входом и дек с ограниченным выходом. Логическая и физическая структуры дека аналогичны логической и физической структуре кольцевой FIFO-очереди. Однако, применительно к деку целесообразно говорить не о начале и конце, а о левом и правом конце.
Операции над деком: включение элемента справа, слева; исключение элемента справа, слева; определение размера; очистка.
Строка
- это линейно упорядоченная
Говоря о строках, обычно имеют в виду текстовые строки - строки, состоящие из символов, входящих в алфавит какого-либо выбранного языка, цифр, знаков препинания и других служебных символов.
Базовыми операциями над строками являются: определение длины строки; присваивание строк; конкатенация (сцепление) строк; выделение подстроки; поиск вхождения.
Операция определения длины строки имеет вид функции, возвращаемое значение которой - целое число - текущее число символов в строке. Операция присваивания имеет тот же смысл, что и для других типов данных.
Динамические структуры по определению характеризуются отсутствием физической смежности элементов структуры в памяти непостоянством и непредсказуемостью размера (числа элементов) структуры в процессе её обработки. Для установления связи между элементами динамической структуры используются указатели, через которые устанавливаются явные связи между элементами. Такое представление данных в памяти называется связным. Элемент динамической структуры состоит из двух полей:
Когда связное представление данных используется для решения прикладной задачи, для конечного пользователя "видимым" делается только содержимое информационного поля, а поле связок используется только программистом-разработчиком.
Достоинства связного представления данных: в возможности обеспечения значительной изменчивости структур; размер структуры ограничивается только доступным объёмом машинной памяти; при изменении логической последовательности элементов структуры требуется не перемещение данных в памяти, а только коррекция указателей.
Вместе с тем связное представление не лишено и недостатков: работа с указателями требует, как правило, более высокой квалификации от программиста; на поля связок расходуется дополнительная память; доступ к элементам связной структуры может быть менее эффективным по времени.
Последний недостаток является наиболее серьёзным и именно им ограничивается применимость связного представления данных.
Списком называется упорядоченное множество, состоящее из переменного числа элементов, к которым применимы операции включения, исключения. Список, отражающий отношения соседства между элементами, называется линейным. Если ограничения на длину списка не допускаются, то список представляется в памяти в виде связной структуры. Линейные связные списки являются простейшими динамическими структурами данных. Графически связи в списках удобно изображать с помощью стрелок.
На рис. 5.1 приведена структура односвязного списка. На нем поле INF - информационное поле, данные, NEXT - указатель на следующий элемент списка. Каждый список должен иметь особый элемент, называемый указателем начала списка, который по формату отличен от остальных элементов. В поле указателя последнего элемента списка находится специальный признак nil, свидетельствующий о конце списка.
Рис. 5.1. Структура односвязного списка
Но, обработка односвязного списка не всегда удобна, так как отсутствует возможность продвижения в противоположную сторону. Такую возможность обеспечивает двухсвязный список, каждый элемент которого содержит два указателя: на следующий и предыдущий элементы списка. Структура линейного двухсвязного списка приведена на рис. 5.2, где поле NEXT - указатель на следующий элемент, поле PREV - указатель на предыдущий элемент. В крайних элементах соответствующие указатели должны содержать nil, как и показано на рис. 5.2.
Для удобства обработки списка добавляют еще один особый элемент - указатель конца списка. Наличие двух указателей в каждом элементе усложняет список и приводит к дополнительным затратам памяти, но в то же время обеспечивает более эффективное выполнение некоторых операций над списком.
Рис. 5.2. Структура двухсвязного списка
Разновидностью рассмотренных видов линейных списков является кольцевой список, который может быть организован на основе как односвязного, так и двухсвязного списков. При этом в односвязном списке указатель последнего элемента должен указывать на первый элемент; в двухсвязном списке в первом и последнем элементах соответствующие указатели переопределяются, как показано на рис.5.3.
При работе с такими списками несколько упрощаются некоторые процедуры, выполняемые над списком. Однако, при просмотре такого списка следует принять некоторых мер предосторожности, чтобы не попасть в бесконечный цикл.