Автор работы: Пользователь скрыл имя, 28 Октября 2012 в 07:42, лабораторная работа
Работа содержит задачи по дисциплине "Информатика" и их решения
Тема: Экспертные системы
В начале 80-х годов в исследованиях по искусственному интеллекту сформировалось самостоятельное направление , получившее название ЭКСПЕРТНЫЕ СИСТЕМЫ (ЭС). Предтечи экспертных систем были предложены в 1832 году С.Н. Корсаковым создавшим механические устройства, так называемые «интеллектуальные машины» ,позволявшие находить решения по заданным условиям, например определять наиболее подходящие лекарства по наблюдаемым у пациента симптомам заболевания.
Цель исследований по ЭС состоит в разработке программ, которые используются при решении задач, трудные для эксперта-человека, получают результаты, не уступающие качеству и эффективности решениям, получаемым экспертом. Исследователем в области ЭС для названия своей дисциплины часто используют так же термин «Инженерия знаний», введенный Е. Фейтенбаумом как «Привнесение принципов и инструментария исследований из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов» Програмные средства базирующиеся на технологии Экспертных систем получили значительное распространение в мире.
В информатике экспертные системы рассматриваются совместно с базами знаний как модели поведения экспертов в определенной области знаний с использованием процедур логического вывода и принятия решений, а базы знаний как совокупность фактов и правил логического вывода в выбранной предметной области деятельности похожие действия выполняет такой программный инструмент такой как мастер(wizard). Мастера применяются как в системных программах, так ив прикладных для упрощения интерактивного общения с пользователем(например при установке ПО).Главное отличие мастеров от экспертных систем- отсутствие базы данных, все действия жестко запрограмированны. Это просто набор форм для заполнения пользователем. Другие подобные программы – поисковые или справочные (энциклопедические) системы. По запросу пользователя они предоставляют наиболее подходящие релевантные разделы базы статей(представления об объектах областей знаний, их виртуальную модель).
С Экспертными Системами связаны некоторые распространенные заблуждения: заблуждение первое: ЭС будут делать не более(а скорее даже менее) того, что может эксперт- человек, создавший данную систему. Для опровержения данного постулата можно построить самообучающуюся ЭС в области, в которой вообще нет экспертов, либо объединить в одной ЭС знания нескольких экспертов, и получить в результате систему, которая может то, что ни один из её создателей не может.
Заблуждение второе: ЭС никогда не заменят человека-эксперта. Уже заменяют, иначе зачем бы их создавали.
Важность экспертных систем состоит в следующем:
технология экспертных систем существенно расширяет круг практически значимых задач, решаемых на компьютерах, решение которых приносит значительный экономический эффект;
технология ЭС является важнейшим средством в решении глобальных проблем традиционного программирования: длительность и, следовательно, высокая стоимость разработки сложных приложений;
высокая стоимость
сопровождения сложных систем, которая
часто в несколько раз
объединение технологии ЭС с технологией традиционного программирования добавляет новые качества к программным продуктам за счет: обеспечения динамичной модификации приложений пользователем, а не программистом; большей "прозрачности" приложения (например, знания хранятся на ограниченном ЕЯ, что не требует комментариев к знаниям, упрощает обучение и сопровождение); лучшей графики; интерфейса и взаимодействия.
По мнению ведущих специалистов , в недалекой перспективе ЭС будут играть ведущую роль во всех фазах проектирования, разработки, производства, распределения, продажи, поддержки и оказания услуг;
ЭС предназначены для так называемых неформализованных задач, т.е. ЭС не отвергают и не заменяют традиционного подхода к разработке программ, ориентированного на решение формализованных задач. Неформализованные задачи обычно обладают ошибочностью, неоднозначностью, неполнотой и противоречивостью исходных данных, большой размерностью пространства решения, т.е. перебор при поиске решения весьма велик;
Следует подчеркнуть, что неформализованные задачи представляют большой и очень важный класс задач. Многие специалисты считают, что эти задачи являются наиболее массовым классом задач, решаемых ЭВМ.
Экспертные системы и системы искусственного интеллекта отличаются от систем обработки данных тем, что в них в основном используются символьный (а не числовой) способ представления, символьный вывод и эвристический поиск решения (а не исполнение известного алгоритма). Экспертные системы применяются для решения только трудных практических (не игрушечных) задач. По качеству и эффективности решения экспертные системы не уступают решениям эксперта-человека. Решения экспертных систем обладают "прозрачностью", т.е. могут быть объяснены пользователю на качественном уровне. Это качество экспертных систем обеспечивается их способностью рассуждать о своих знаниях и умозаключениях. Экспертные системы способны пополнять свои знания в ходе взаимодействия с экспертом. Необходимо отметить, что в настоящее время технология экспертных систем используется для решения различных типов задач (интерпретация, предсказание, диагностика, планирование, конструирование, контроль, отладка, инструктаж, управление ) в самых разнообразных проблемных областях, таких, как финансы, нефтяная и газовая промышленность, энергетика, транспорт, фармацевтическое производство, космос, металлургия, горное дело, химия, образование, целлюлозно-бумажная промышленность, телекоммуникации и связь и др.
Коммерческие успехи к
фирмам-разработчикам систем искусственного
интеллекта (СИИ) пришли не сразу. На протяжении
1960 - 1985 гг. успехи ИИ касались в основном
исследовательских разработок, которые
демонстрировали пригодность
Структура экспертных систем состоит из
База данных (рабочая память) предназначена для хранения исходных и промежуточных данных решаемой в текущий момент задачи. Этот термин совпадает по названию, но не по смыслу с термином, используемым в информационно-поисковых системах (ИПС) и системах управления базами данных (СУБД) для обозначения всех данных (в первую очередь долгосрочных), хранимых в системе.
База знаний (БЗ) в ЭС предназначена для хранения долгосрочных данных, описывающих рассматриваемую область (а не текущих данных), и правил, описывающих целесообразные преобразования данных этой области.
Решатель, используя исходные данные из рабочей памяти и знания из БЗ, формирует такую последовательность правил, которые, будучи примененными к исходным данным, приводят к решению задачи.
Компонент приобретения знаний автоматизирует процесс наполнения ЭС знаниями, осуществляемый пользователем-экспертом.
Объяснительный компонент объясняет, как система получила решение задачи (или почему она не получила решение) и какие знания она при этом использовала, что облегчает эксперту тестирование системы и повышает доверие пользователя к полученному результату.
Диалоговый компонент ориентирован на организацию дружественного общения с пользователем как в ходе решения задач, так и в процессе приобретения знаний и объяснения результатов работы.
В разработке ЭС участвуют
представители следующих
эксперт в проблемной области, задачи которой будет решать ЭС;
инженер по знаниям - специалист по разработке ЭС (используемые им технологию, методы называют технологией (методами) инженерии знаний);
программист по разработке инструментальных средств (ИС), предназначенных для ускорения разработки ЭС.
Необходимо отметить, что отсутствие среди участников разработки инженеров по знаниям (т. е. их замена программистами) либо приводит к неудаче процесс создания ЭС, либо значительно удлиняет его.
"Почему система
задает тот или иной вопрос?",
"как ответ, собираемый
Статические ЭС данного типа используются в тех приложениях, где можно не учитывать изменения окружающего мира, происходящие за время решения задачи. Первые ЭС, получившие практическое использование, были статическими.
На рис. 1.2 показано, что в архитектуру динамической ЭС по сравнению со статической ЭС вводятся два компонента: подсистема моделирования внешнего мира и подсистема связи с внешним окружением. Последняя осуществляет связи с внешним миром через систему датчиков и контроллеров. Кроме того, традиционные компоненты статической ЭС (база знаний и машина вывода) претерпевают существенные изменения, чтобы отразить временную логику происходящих в реальном мире событий.
Этапы разработки экспертных систем
Разработка ЭС имеет существенные отличия от разработки обычного программного продукта. Опыт создания ЭС показал, что использование при их разработке методологии, принятой в традиционном программировании, либо чрезмерно затягивает процесс создания ЭС, либо вообще приводит к отрицательному результату.
Использовать ЭС следует только тогда, когда разработка ЭС возможна, оправдана и методы инженерии знаний соответствуют решаемой задаче. Чтобы разработка ЭС была возможной для данного приложения, необходимо одновременное выполнение по крайней мере следующих требований:
1) существуют эксперты
в данной области, которые
2) эксперты сходятся в оценке предлагаемого решения, иначе нельзя будет оценить качество разработанной ЭС;
3) эксперты способны
4) решение задачи требует
только рассуждений, а не
5) задача не должна быть слишком трудной (т.е. ее решение должно занимать у эксперта несколько часов или дней, а не недель);
6) задача хотя и не
должна быть выражена в
7) решение задачи не
должно в значительной степени
использовать "здравый смысл"
(т.е. широкий спектр общих
Использование ЭС в данном приложении может быть возможно, но не оправдано. Применение ЭС может быть оправдано одним из следующих факторов:
решение задачи принесет значительный эффект, например экономический;
использование человека-эксперта невозможно либо из-за недостаточного количества экспертов, либо из-за необходимости выполнять экспертизу одновременно в различных местах;
использование ЭС целесообразно в тех случаях, когда при передаче информации эксперту происходит недопустимая потеря времени или информации;
использование ЭС целесообразно при необходимости решать задачу в окружении, враждебном для человека.
Приложение соответствует методам ЭС, если решаемая задача обладает совокупностью следующих характеристик:
1) задача может быть
естественным образом решена
посредством манипуляции с
2) задача должна иметь
эвристическую, а не
3) задача должна быть достаточно сложна, чтобы оправдать затраты на разработку ЭС. Однако она не должна быть чрезмерно сложной (решение занимает у эксперта часы, а не недели), чтобы ЭС могла ее решать;
4) задача должна быть
достаточно узкой, чтобы
В ходе работ по созданию ЭС сложилась определенная технология их разработки, включающая шесть следующих этапов (рис. 1.4):
идентификацию, концептуализацию, формализацию, выполнение, тестирование, опытную эксплуатацию. На этапе идентификации определяются задачи, которые подлежат решению, выявляются цели разработки, определяются эксперты и типы пользователей.
На этапе концептуализации проводится содержательный анализ проблемной области, выявляются используемые понятия и их взаимосвязи, определяются методы решения задач.
На этапе формализации выбираются ИС и определяются способы представления всех видов знаний, формализуются основные понятия, определяются способы интерпретации знаний, моделируется работа системы, оценивается адекватность целям системы зафиксированных понятий, методов решений, средств представления и манипулирования знаниями.