Автор работы: Пользователь скрыл имя, 07 Мая 2010 в 10:25, реферат
Прежде чем рассмотреть задачу кодирования, необходимо рассмотреть ряд определений, использующихся в теории кодирования:
Код – (1) правило, описывающее соответствие знаков или их сочетаний одного алфавита знакам или их сочетаниям другого алфавита; - (2) знаки вторичного алфавита, используемые для представления знаков или их сочетаний первичного алфавита.
Кодирование – перевод информации, представленной посредством первичного алфавита, в последовательность кодов.
При работе с кодированной информацией, искажаемой помехами, можно выделить следующие основные проблемы: установления самого факта того, что произошло искажение информации; выяснения того, в каком конкретно месте передаваемого текста это произошло; исправления ошибки – хотя бы с некоторой степенью достоверности.
Помехи в передачи информации - свойство отнюдь не только технических систем. Это - вполне обычное дело в быту. Пример был выше; другие примеры - разговор по телефону, в трубке которого "трещит", вождение автомобиля в тумане и т.д. Чаще всего человек вполне прилично справляется с каждой из указанных выше задач, хотя и не всегда отдает себе отчет, как он это делает (т.е. неалгоритмически, а исходя из каких-то ассоциативных связей). Известно, что естественный язык обладает большой избыточностью (в европейских языках - до 70%), чем объясняется большая помехоустойчивость сообщений, составленных из знаков алфавитов таких языков. Примером, иллюстрирующим устойчивость русского языка к помехам, может служить предложение "в словох всо глосноо зомононо боквой о". Здесь 26% символов "поражены", однако это не приводит к потере смысла. Таким образом, в данном случае избыточность является полезным свойством.
Например, каждый фрагмент текста ("предложение") передается трижды, и верным считается та пара фрагментов, которая полностью совпала. Однако, большая избыточность приводит к большим временным затратам при передаче информации и требует большого объема памяти при ее хранении. Отсюда следует задача устранения избыточности, или эффективного кодирования. Впервые теоретическое исследование такого рода проблем предпринял К.Шеннон.
Первая теорема Шеннона о передаче информации, которая называется также основной теоремой о кодировании при отсутствии помех, формулируется следующим образом:
При отсутствии помех передачи всегда возможен такой вариант кодирования сообщения, при котором среднее число знаков кода, приходящихся на один знак кодируемого алфавита, будет сколь угодно близко к отношению средних информаций на знак первичного и вторичного алфавитов.
Используя понятие избыточности кода, можно дать более короткую формулировку теоремы:
При
отсутствии помех передачи всегда возможен
такой вариант кодирования
Данные утверждения являются теоремами и, следовательно, должны доказываться, однако доказательства мы опустим. Для нас важно, что теорема открывает принципиальную возможность оптимального кодирования. Однако необходимо сознавать, что из самой теоремы никоим образом не следует, как такое кодирование осуществить практически – для этого должны привлекаться какие-то дополнительные соображения, что и станет предметом последующего обсуждения.
Таким образом, оптимальное кодирование принципиально возможно.
Наиболее важна для практики ситуация, когда М=2, то есть информацию кодируют лишь двумя сигналами 0 и 1.
Шенноном
была рассмотрена ситуация, когда
при кодировании сообщения в
первичном алфавите учитывается
различная вероятность
Кmin
(А, В)= I (A) / log2 M= I (A) ,
здесь I (A) - средняя информация на знак первичного алфавита.
Ограничим
себя ситуацией, когда M = 2, т.е. для представления
кодов в линии связи
I1(A)≤
K(2)
и первая теорема Шеннона получает следующую интерпретацию:
При отсутствии помех передачи средняя длина двоичного кода может быть сколь угодно близкой к средней информации, приходящейся на знак первичного алфавита.
Определение
количества переданной информации при
двоичном кодировании сводится к простому
подсчету числа импульсов (единиц) и пауз
(нулей). При этом возникает проблема выделения
из потока сигналов (последовательности
импульсов и пауз) отдельных кодов. Приемное
устройство фиксирует интенсивность и
длительность сигналов. Элементарные
сигналы (0 и 1) могут иметь одинаковые или
разные длительности. Их количество в
коде (длина кодовой цепочки), который
ставится в соответствие знаку первичного
алфавита, также может быть одинаковым
(в этом случае код называется равномерным)
или разным (неравномерный код). Наконец,
коды могут строиться для каждого знака
исходного алфавита (алфавитное кодирование)
или для их комбинаций (кодирование блоков,
слов). В результате при кодировании (алфавитном
и словесном) возможны следующие варианты
сочетаний:
Таблица 1. Варианты сочетаний
Длительности элементарных сигналов | Кодировка первичных символов (слов) | Ситуация |
одинаковые | равномерная | (1) |
одинаковые | неравномерная | (2) |
разные | равномерная | (3) |
разные | неравномерная | (4) |
В случае использования неравномерного кодирования или сигналов разной длительности (ситуации (2), (3) и (4)) для отделения кода одного знака от другого между ними необходимо передавать специальный сигнал – временной разделитель (признак конца знака) или применять такие коды, которые оказываются уникальными, т.е. несовпадающими с частями других кодов. При равномерном кодировании одинаковыми по длительности сигналами (ситуация (1)) передачи специального разделителя не требуется, поскольку отделение одного кода от другого производится по общей длительности, которая для всех кодов оказывается одинаковой (или одинаковому числу бит при хранении).
Длительность
двоичного элементарного
Если имеется источник информации с энтропией Н(х) и канал связи с пропускной способностью С, то если С > H(X), то всегда можно закодировать достаточно длинное сообщение таким образом, что оно будет передано без задержек. Если же, напротив, С < H(X), то передача информации без задержек невозможна.
Первая теорема Шеннона декларирует возможность создания системы эффективного кодирования дискретных сообщений, у которой среднее количество двоичных символов на один символ сообщения асимптотически стремится к энтропии источника сообщений (в отсутствии помех).
Первая теорема Шеннона (переформулировка).
При отсутствии помех средняя длина двоичного кода может быть сколь угодно близкой к средней информации, приходящейся на знак первичного алфавита.
Какие же могут быть особенности вторичного алфавита при кодировании:
Элементарные коды 0 и 1 могут иметь одинаковые длительности (t0=t1) или разные (≠).
Длина кода может быть одинаковой для всех знаков первичного алфавита (код равномерный) или различной (неравномерный код)
Коды могут строиться для отдельного знака первичного алфавита (алфавитное кодирование) или для их комбинаций (кодирование блоков, слов).
О
тношение пропускной способности канала связи к скорости неискаженной передачи символов алфавита передаваемого сообщения должно быть больше или равно энтропии передачи одного символа.
Вторая теорема Шеннона гласит, что при наличии помех в канале всегда можно найти такую систему кодирования, при которой сообщения будут переданы с заданной достоверностью. При наличии ограничения пропускная способность канала должна превышать производительность источника сообщений. Вторая теорема Шеннона устанавливает принципы помехоустойчивого кодирования. Для дискретного канала с помехами теорема утверждает, что, если скорость создания сообщений меньше или равна пропускной способности канала, то существует код, обеспечивающий передачу со сколь угодно малой частотой ошибок.
Доказательство
теоремы основывается на следующих
рассуждениях. Первоначально
Теорема позволяет определять на приемной стороне канала, какому подмножеству принадлежит искаженная помехами принятая последовательность n + r, и тем самым восстановить исходную последовательность длины n.
Эта
теорема не дает конкретного метода
построения кода, но указывает на пределы
достижимого в области
В
зависимости
от применяемых методов
Используется для представления равномерных n - значных кодов. Для примитивного (полного и равномерного) кода матрица содержит n - столбцов и 2n - строк, т.е. код использует все сочетания. Для помехоустойчивых (корректирующих, обнаруживающих и исправляющих ошибки) матрица содержит n - столбцов (n = k+m, где k-число информационных, а m - число проверочных разрядов) и 2k - строк (где 2k - число разрешенных кодовых комбинаций). При больших значениях n и k матрица будет слишком громоздкой, при этом код записывается в сокращенном виде. Матричное представление кодов используется, например, в линейных групповых кодах, кодах Хэмминга и т.д.
Кодовое
дерево - связной граф, не содержащий
циклов. Связной
граф - граф, в котором для любой пары
вершин существует путь, соединяющий эти
вершины. Граф состоит из узлов (вершин)
и ребер (ветвей), соединяющих узлы, расположенные
на разных уровнях. Для построения дерева
равномерного двоичного кода выбирают
вершину называемую корнем дерева (истоком)
и из нее проводят ребра в следующие две
вершины и т.д.
Пример кодового дерева для полного кода приведен на рис.1.
1
0
Информация о работе Кодирование информации. Кодирование чисел, текста, изображения и звука