Искусственный интеллект

Автор работы: Пользователь скрыл имя, 14 Февраля 2012 в 16:23, курсовая работа

Краткое описание

Цель курсовой работы – изучение и анализ искусственного интеллекта и интеллектуальных компьютерных систем. В структуру курсовой работы входят введение, две главы, заключение, список использованных источников, в которых подробно рассмотрен комплекс вопросов, посвященных созданию и развитию искусственного интеллекта, а также рассмотрены системы искусственного интеллекта.

Содержимое работы - 1 файл

моя курсовая гипертекст.doc

— 184.00 Кб (Скачать файл)

     Проблема представления знаний в компьютерных системах – одна из основных проблем в области искусственного интеллекта. Решение этой проблемы позволит специалистам, не обученным программированию, непосредственно на языке "деловой прозы" в диалоговом режиме работать с ЭВМ и с ее помощью формировать необходимые решения. Таким образом, решение проблемы представления знаний в компьютерных системах позволит существенно усилить интеллектуальную творческую деятельность человека за счет ЭВМ [16, с. 10].

     Остановимся на истории развития этой проблемы. С появлением ЭВМ открылась возможность электронного представления знаний. На первом этапе это были сами данные, и обрабатывающие их программы. Взаимодействие специалистов разных профилей, в интересах которых использовались ЭВМ, осуществлялось через математиков-прикладников и программистов. В дальнейшем произошло отделение данных от программ – появились базы и банки данных, что, в свою очередь, позволило создавать информационно-справочные, информационно-поисковые системы различных типов. Появился диалоговый режим взаимодействия человека с ЭВМ, который в определенных пределах позволил обеспечить работу специалистов, не обученных программированию.

     В свою очередь, создание банков данных и баз данных, а также самых сложных программ во многом стало возможным потому, что коренным образом изменился и язык и принципы программирования. Практически вся представленная здесь эволюция опиралась на трудный, но настойчиво осуществляемый процесс сближения языков ЭВМ с человеческим языком. Определенные успехи в этой области позволили говорить даже об интеллектуализации ЭВМ. В первую очередь проблема сближения языков решалась для создания больших информационно-поисковых систем, где пользователь общался с ЭВМ на ограниченном естественном языке, то есть на языке "деловой прозы".

     Возникшая здесь проблема смыслового анализа текстов сразу поставила вопрос о построении семантической (смысловой) модели определенной предметной области. Однако так как ЭВМ сейчас способны обрабатывать только формализованные данные, такие модели могли быть построены только в случае успешной формализации знаний в этой области. В связи с этим в теории искусственного интеллекта были разработаны формализмы представления знаний - семантические сети, фреймы, продукционные системы. Формализмы искусственного интеллекта позволили, с одной стороны, строить базы знаний как абстрактную надстройку над базой данных, а с другой – создавать модели знаний множества областей описательных и слабо формализованных наук (геология, медицина, биология, общественные науки и др.) [4, с. 30].

     Однако нельзя не учитывать того, что создавать искусственный интеллект, подобный человеческому, путем полной формализации всего окружающего мира – это безуспешная попытка, там. где начинается абсолютная формализация, заканчивается подлинный интеллект, содержащий творческое начало, свойственное человеку. Интерпретируя это положение для компьютерных систем, можно утверждать, что полная формализация – это враг искусственного интеллекта. Сегодня ЭВМ сознательно используются как средство представления знаний. Однако сами ЭВМ содержат не знание, а информацию, то есть представление или модель знания. На основе этой модели пользователь воссоздает необходимое ему знание. Содержимое памяти ЭВМ не равносильно человеческому знанию, которое является гораздо более сложным феноменом, но может служить удобной для коммуникации моделью этого знания. Этот принцип моделирования профессиональных знаний лежит в основе экспертных систем. Поскольку экспертные системы непосредственно помогают в осуществлении интеллектуальной деятельности человека, то разработку экспертных систем часто относят к достижениям в области искусственного интеллекта. Однако многие специалисты считают экспертные системы эффективной альтернативой искусственному интеллекту, хотя в их создании использован ряд современных достижений из области искусственного интеллекта [2, с. 35].

     В то время, как искусственный интеллект ставит задачу создания интеллектуальных моделей действительности, обеспечивающих целесообразное поведение, главное в разработке экспертных систем – это модель профессиональных знаний об определенном аспекте действительности, присущих человеку - эксперту или нескольким экспертам [16, с. 12]. Разработки в области искусственного интеллекта направлены на замену интеллектуальных функций человека функциями ЭВМ. В противовес этому экспертные системы не только не предполагают вытеснения человека из каких-либо интеллектуальных сфер деятельности, а наоборот, ориентируются на то, что профессиональные знания специалиста, как правило, лучше описывают плохо структурированную действительность, чем любая искусственная модель, а роль экспертных систем состоит в том, чтобы сделать знания одного или нескольких экспертов достоянием любого специалиста в данной области независимо от пространственно-временных ограничений. При этом от пользователя экспертной системы в качестве условия эффективного использования представляемых консультаций требуется профессиональное творческое владение предметом. В идеале пользователь в процессе взаимодействия с экспертной системой сам становится экспертом, знания которого учитываются в этой системе. Если искусственный интеллект традиционно отводит человеку пассивную роль лица, перекладывающего на ЭВМ тяжесть трудных решений, то экспертные системы ориентируются на творчество пользователя, способного самостоятельно принимать ответственные решения с учетом профессиональных знаний, которые представляются ему через экспертные системы. 
 
 
 
 
 
 
 
 

     2 Системы искусственного интеллекта 

     2. 1 Подходы к построению систем искусственного интеллекта 

     Термин интеллект (intelligence) происходит от латинского intellectus – что означает ум, рассудок, разум; мыслительные способности человека.

     Соответственно искусственный интеллект (artificial intelligence) – ИИ (AI) обычно толкуется как свойство автоматических систем брать на себя отдельные функции интеллекта человека, например, выбирать и принимать оптимальные решения на основе ранее полученного опыта и рационального анализа внешних воздействий [10, с. 6].

     Этот класс пакетов включает: информационные системы, поддерживающие диалог на естественном языке (естественно-языковый интерфейс); экспертные системы, позволяющие давать рекомендации пользователю в различных ситуациях; интеллектуальные пакеты прикладных программ (ППП), позволяющие решать прикладные задачи без программирования.

     Естественно-языковый интерфейс был наиболее привлекателен для общения с ЭВМ с момента ее появления. Это позволило бы исключить необходимость обучения конечного пользователя языку команд или другим приемам формулировки своих заданий для решения на компьютере, поскольку естественный язык является наиболее приемлемым средством общения для человека. Поэтому работы по созданию такого рода интерфейса начались с середины 20-го века. Однако, несмотря на весь энтузиазм исследователей и проектировщиков, эта задача не решена и по сей день из-за огромных сложностей, связанных с пониманием предложений естественного языка и связного текста в целом. Некоторые программные продукты, которые появлялись на рынке, носили скорее экспериментальный характер, имели множество ограничений и не решали задачу кардинально. Тем не менее, несмотря на кажущийся застой в этой сфере, данная проблема остается актуальной и по сей день и вошла в состав проблематики, связанной с проектом ЭВМ пятого поколения.

     Экспертные системы впервые появились в области медицины. Возникла идея интеграции знаний экспертов в области медицины или ее отдельных разделов в некоторую электронную форму, которая позволила бы начинающему врачу иметь своеобразного электронного советника при принятии решений по тому или иному врачебному случаю. Выбор области медицины объясняется слишком большой ценой ошибок, которые касаются жизни и здоровья людей. Постепенно от области медицины эта технология распространилась и на другие сферы деятельности человека, например, производство. Технология использования экспертных систем предполагает первоначальное "обучение" системы, т.е. заполнение ее конкретными знаниями из той или иной проблемной области, а потом уже эксплуатацию наполненной знаниями экспертной системы для решения прикладных задач [9, с. 325]. Эта идеология проявила себя в проекте ЭВМ пятого поколения в части привлечения конечного пользователя к решению своих задач и связана с проблемой автоформализации знаний.

     Интеллектуальные пакеты прикладных программ позволяют, аналогично экспертным системам, предварительно создавать базу знаний, включающую совокупность знаний из той или иной области деятельности человека, а затем решать практические задачи с привлечением этих знаний. Различие этих видов пакетов состоит в том, что экспертные системы, в отличие от интеллектуальных ППП, позволяют интегрировать знания из так называемых слабо формализуемых предметных областей, в которых сложно определить входные и выходные параметры задачи, а также невозможно сформировать четкий алгоритм ее решения. Кроме того, экспертные системы не формируют алгоритм решения задачи как в случае интеллектуальных ППП, а лишь выдают "советы" пользователю на основании его запроса.

     Область применения:

     1) Доказательства теорем;

     2) Игры;

     3) Распознавание образов;

     4) Принятие решений;

     5) Адаптивное программирование;

     6) Сочинение машинной музыки;

     7) Обработка данных на естественном языке;

     8) Обучающиеся сети (нейросети);

     9) Вербальные концептуальные обучения.

     Существуют различные подходы к построению систем искусственного интеллекта. Это разделение не является историческим, когда одно мнение постепенно сменяет другое, и различные подходы существуют и сейчас             [11, с. 489]. Кроме того, поскольку по-настоящему полных систем искусственного интеллекта в настоящее время нет, то нельзя сказать, что какой-то подход является правильным, а какой-то ошибочным.

     Для начала кратко рассмотрим логический подход. Почему он возник? Ведь человек занимается отнюдь не только логическими измышлениями. Это высказывание конечно верно, но именно способность к логическому мышлению очень сильно отличает человека от животных.

     Основой для данного логического подхода служит Булева алгебра. Каждый программист знаком с нею и с логическими операторами с тех пор, когда он осваивал оператор IF. Свое дальнейшее развитие Булева алгебра получила в виде исчисления предикатов – в котором она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности. Практически каждая система искусственного интеллекта, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в виде аксиом, правила логического вывода как отношения между ними. Кроме того, каждая такая машина имеет блок генерации цели, и система вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели. Мощность такой системы определяется возможностями генератора целей и машиной доказательства теорем.

     Конечно можно сказать, что выразительности алгебры высказываний не хватит для полноценной реализации искусственного интеллекта, но стоит вспомнить, что основой всех существующих ЭВМ является бит – ячейка памяти, которая может принимать значения только 0 и 1. Таким образом было бы логично предположить, что все, что возможно реализовать на ЭВМ, можно было бы реализовать и в виде логики предикатов. Хотя здесь ничего не говорится о том, за какое время.

     Добиться большей выразительности логическому подходу позволяет такое сравнительно новое направление, как нечеткая логика. Основным ее отличием является то, что правдивость высказывания может принимать в ней кроме да/нет (1/0) еще и промежуточные значения – не знаю (0.5), пациент скорее жив, чем мертв (0.75), пациент скорее мертв, чем жив (0.25). Данный подход больше похож на мышление человека, поскольку он на вопросы редко отвечает только да или нет. Хотя правда на экзамене будут приниматься только ответы из разряда классической булевой алгебры. Для большинства логических методов характерна большая трудоемкость, поскольку во время поиска доказательства возможен полный перебор вариантов. Поэтому данный подход требует эффективной реализации вычислительного процесса, и хорошая работа обычно гарантируется при сравнительно небольшом размере базы данных. Под структурным подходом мы подразумеваем здесь попытки построения искусственного интеллекта путем моделирования структуры человеческого мозга. Одной из первых таких попыток был перцептрон Френка Розенблатта. Основной моделируемой структурной единицей в перцептронах (как и в большинстве других вариантов моделирования мозга) является нейрон.

     Позднее возникли и другие модели, которые в простонародье обычно известны под термином "нейронные сети" (НС). Эти модели различаются по строению отдельных нейронов, по топологии связей между ними и по алгоритмам обучения. Среди наиболее известных сейчас вариантов НС можно назвать НС с обратным распространением ошибки, сети Хопфилда, стохастические нейронные сети.

     НС наиболее успешно применяются в задачах распознавания образов, в том числе сильно зашумленных, однако имеются и примеры успешного применения их для построения собственно систем искусственного интеллекта, это уже ранее упоминавшийся ТАИР. Для моделей, построенных по мотивам человеческого мозга характерна не слишком большая выразительность, легкое распараллеливание алгоритмов, и связанная с этим высокая производительность параллельно реализованных НС. Также для таких сетей характерно одно свойство, которое очень сближает их с человеческим мозгом – нейронные сети работают даже при условии неполной информации об окружающей среде, то есть как и человек, они на вопросы могут отвечать не только "да" и "нет" но и "не знаю точно, но скорее да".

Информация о работе Искусственный интеллект