Интеллектуальные информационные системы

Автор работы: Пользователь скрыл имя, 19 Октября 2011 в 02:38, реферат

Краткое описание

Цель курсовой работы заключается в исследовании понятия системы искусственного интеллекта, прогнозирования на основе нейронных сетей в финансах и бизнесе, рассмотрение примеров применения нейронных сетей на практике:
Создание группы экспертов;
Покупка готовой заказной системы;
Создание собственной системы «с нуля»;
Создание системы на основе готовых «нейропакетов»;
Использование нейросетей в различных областях бизнеса и технологий.

Содержание работы

ВВЕДЕНИЕ 3
1 ПОНЯТИЕ "СИСТЕМА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА" 5
1.1 Понятие и классификация систем искусственного интеллекта 7
2 ИСПОЛЬЗОВАНИЕ НЕЙРОСЕТЕЙ В ФИНАНСАХ И БИЗНЕСЕ 12
2.1 Прогнозирование на основе нейросетей 13
2.2 Преимущества и недостатки прогнозирования на нейросетях 15
2.3 Обзор программных продуктов 16
3 ПРИМЕНЕНИЕ НЕЙРОСЕТЕВЫХ ТЕХНОЛОГИЙ НА ПРАКТИКЕ 18
ЗАКЛЮЧЕНИЕ 23
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 25
ПРИЛОЖЕНИЕ А 27
ПРИЛОЖЕНИЕ Б 28

Содержимое работы - 1 файл

Интеллектуальные информационные системы.doc

— 170.00 Кб (Скачать файл)

       NeuroShell Trader не похож ни на один из  графических пакетов потому, что  мощные нейронные сети для  предсказаний становятся осязаемыми. Только соединив вместе наиболее  важные принципы графического отображения, технический анализ и нейронные сети в один простой пакет, оказалось возможным создать продукт специально для трейдеров.

       NeuroShell Easy Series

       Easy - в перводе "легкий, простой" - вовсе не означает, что в данную  серию входят примитивные алгоритмы. Напротив, нейросетевые архитектуры, лежащие в основе программ данной серии, являются самыми последними достижениями научного поиска, результатом которого явилось создание алгоритма "самопостроения" нейронной сети, обладающей рекордными скоростями обучения. Поэтому термин "легкий" относится к простоте, с которой пользователь может обрабатывать свои данные. Теперь пользователь должен сосредоточиться только на формулировке задачи, все остальное программы данной серии сделают сами.

       В состав серии входят:

       NeuroShell Easy Predictor - Предсказатель 

       NeuroShell Easy Classifier - Классификатор 

       NeuroShell Easy Run-Time Server - Генератор автономных  файлов.

       NeuroShell Easy Predictor - дает возможность с легкостью  создавать системы для решения задач

       прогнозирования и предсказания на основе имеющейся  базы данных. Это могут быть предсказания следующих значений параметров временного ряда, например, предсказание курса акций, или оценка какой-либо величины, определяемой набором независимых факторов, например, оценка стоимости квартир или подержанных автомобилей.

       NeuroShell Easy Classifier - предназначен для решения  задач распознавания образов, связанных с определением принадлежности предъявляемого образа (ситуации) к той или иной категории. Например, по набору биржевых показателей вырабатывать сигнал для покупки или продажи акций той или иной компании.

       NeuroShell Easy Run-Time Server - содержит серию программ, которые позволяют использовать  сети, созданные с помощью NeuroShell Easy Predictor и NeuroShell Easy Classifier либо из рабочих листов Microsoft® Excel™, либо в собственных программах.

       NeuroWindows - представляет собой динамическую  библиотеку нейросетевых функций, с помощью которых программист в состоянии построить нейросетевые структуры практически произвольной архитектуры.

 

3 ПРИМЕНЕНИЕ НЕЙРОСЕТЕВЫХ ТЕХНОЛОГИЙ НА ПРАКТИКЕ

       Нейронные сети и генетические алгоритмы в  настоящее время находят огромное число разнообразных применений. Действительно, в любой области человеческой деятельности есть плохо алгоритмизуемые задачи, для решения которых необходима либо постоянная работа группы квалифицированных экспертов, либо адаптивные системы автоматизации, каковыми являются нейронные сети. Разные компании выбирают разные варианты - одни предпочитают тратить деньги на оплату лучших специалистов и их обучение, другие покупают полностью готовые специализированные нейросетевые системы, а третьи комбинируют эти подходы, создавая собственные системы с нуля или на основе готовых коммерческих пакетов. Каждый из вариантов внедрения новых технологий имеет свои достоинства и недостатки (таб.1, 2, 3, 4): 

                                           Таблица 1 - Создание группы экспертов

Достоинства
  • Возможность словесного общения
  • Возможность учета неформализуемых факторов
Недостатки 
  • Высокие расходы на зарплату
  • Расходы на повышение квалификации
  • Опасность потери эксперта (переход к конкуренту, эмиграция, болезнь и т.д.)
  • Человеческая субъективность
  • Противоречивость мнений различных экспертов
 

Таблица 2 - Покупка готовой заказной системы

Достоинства
  • Относительно невысокая стоимость эксплуатации
  • Система создана лучшими специалистами
  • Система сделана с учетом специфики компании
Недостатки 
  • Очень высокая стоимость разработки
  • Невысокая гибкость
  • Необходимость в разглашении секретов делового процесса компании
  • Необходимость в привлечении специалистов со стороны для исправления ошибок, внесения изменений и т.д.
 
 
 
 
 
 
 

Таблица 3 - Создание собственной системы «с нуля»

Достоинства
  • Управление процессом разработки
  • Легкость внесения изменений и модернизации
  • Полная конфиденциальность
Недостатки 
  • Необходим штат программистов
  • Необходимы специалисты по нейросетям
  • Занимает много времени
  • Высокая стоимость
  • Необходима настройка системы
 

Таблица 4 - Создание системы на основе готовых «нейропакетов»

Достоинства
  • Невысокая стоимость базового пакета и обновлений
  • Готовые архитектуры и алгоритмы обучения
  • Пакет создан профессионалами в области нейросетей
  • Достаточно высокая гибкость
  • Техническая поддержка производителя пакета
  • Полная конфиденциальность
  • Не требуется программирование
  • От пользователя не требуется глубокого знания нейросетей
  • Более эффективное обнаружение и исправление ошибок за счет большого числа пользователей
  • Возможность приобретения надстроек к пакету у различных производителей
  • Возможность общения с другими пользователями пакета
Недостатки 
  • Не всегда возможно создавать собственные архитектуры и алгоритмы обучения
  • Необходима настройка системы
  • Необходима подготовка данных
 

       Из  приведенной таблицы видно, что выбор варианта решения должен определяться исходя из целей и возможностей компании. Первые три варианта больше подойдут очень крупным компаниям, планирующим деятельность на 5-10 лет вперед и не ожидающим быстрой окупаемости вложений в новые технологии. По этому пути идут многие западные фирмы, желающие увеличить прибыльность своего бизнеса в условиях жесткой конкуренции.

       Вариант создания собственной системы на основе готового нейропакета подходит для менее крупных компаний и  даже для частных лиц - инвесторов, трейдеров, предпринимателей. Впрочем, имеется и несколько примеров крупнейших концернов, избравших этот вариант и добившихся успеха. Так, например, компания DuPont разработала новый материал - безопасное стекло, используя нейросетевой пакет NeuroShell. Также этот пакет используется в крупных западных банках, таких как Citibank, Security Pacific National Bank, The World Bank, Lloyds Bank, The Federal Reserve Board, Federal Reserve Bank of New York, и в страховых компаниях Royal Insurance, Presidential Life Insurance, New York Life Insurance и других. Ниже будет рассказано об некоторых способах использования нейросетей в различных областях бизнеса и технологий (таблица 5): 

Таблица 5 - Использование нейросетей в различных областях бизнеса и технологий

Функции До применения нейросетей После применения нейросетей
1. Отслеживание операций с краденными и поддельными кредитными картами Отслеживание  операций по картам с помощью специальных программ и операторов Специализированная  система Falcon фирмы HNC позволяет по частоте сделок и характеру покупок выделить подозрительные сделки и сигнализировать об этом.
2.Медицинская  диагностика Общепринятая  методика объективной диагностики состоит в том, что в процессе обследования регистрируются "вызванные потенциалы" (отклики мозга) в ответ на звуковой раздражитель, проявляющиеся в виде всплесков на электроэнцефалограмме. Для диагностики слуха у детей врачу необходимо провести около 2000 тестов, что занимает около часа.  Компанией "НейроПроект" создана система объективной диагностики слуха у грудных детей. Нейросеть способна с той же достоверностью определить уровень слуха уже по 200 наблюдениям в течение всего нескольких минут, причем без участия квалифицированного персонала.  
3. Обнаружение фальсификаций Применение  специальной экспертной системы  с 14% эффективностью. Нейросеть позволяет  обнаруживать 38% мошеннических случаев. Для настройки системы были использованы также методы нечеткой логики и генетической оптимизации.
 
 
 
 
 
 

Продолжение таблицы 5

4. Анализ потребительского рынка Обычные методы прогнозирования отклика потребителей маркетинговой службой и группой аналитиков. Компания GoalAssist Corporation построила две нейросети для решения этой задачи. Первая из них - это сеть с адаптивной архитектурой пакета NeuroShell Classifier компании Ward Systems Group, на входы которой подавались различные параметры товаров и рекламной политики. С помощью этой сети, предназначенной специально для классификации, было получено разделение входов на 4 класса, характеризующих отклик потребителей. Те же входы вместе с ответом первой сети подавались далее на вход пакета NeuroShell Predictor, который также содержит сложную самоорганизующуюся сеть, но приспособленную для задач количественного прогнозирования. Средняя ошибка предсказаний составила всего около 4%. Построение этой модели заняло около 120 часов, также потребовалось время на предобработку входных данных.
5. Исследование факторов спроса Проведение  маркетинговых  и социологических  исследований. для этого компании проводят опросы потребителей, позволяющие выяснить, какие факторы являются для потребителя решающими при покупке данного товара или услуги, почему в некоторых случаях предпочтение отдается конкурентам, и какие улучшения товара потребитель хотел бы увидеть в будущем. Нейросетевые  методы позволяют вывлять сложные зависимости между факторами спроса, прогнозировать поведение потребителей при изменении маркетинговой политики, находить наиболее значимые факторы и оптимальные стратегии рекламы, а также очерчивать сегмент потребителей, наиболее перспективный для данного товара. 
 
 
 
 
 
 
 
 
 

Продолжение таблицы 5

6.Прогнозирова-ние  потребления энергии   Эти данные получают в результате измерений потребляемой энергии для каждого клиента. Измерения проводятся каждые 15 минут, причем известно, что некоторые из них - ошибочны.   С помощью  нейросетей была построена система выявления ошибочных измерений, а также система прогнозирования потребления энергии в каждый момент времени. Знание точного прогноза позволило энергетической компании использовать гибкую тарифную политику и увеличить свою прибыль.
7. Оценка недвижимости Стоимость недвижимости зависит от большого числа факторов. Так как вид этой зависимости неизвестен, то стандартные методы анализа неэффективны в задаче оценки стоимости квартиры. Как правило, эта задача решается экспертами-оценщиками, работающими в агентстве по недвижимости. Недостатком такого подхода является субъективность оценщика, а также возможные разногласия между различными экспертами.     Существуют  успешные примеры решения задачи объективной оценки с помощью нейросети.

Информация о работе Интеллектуальные информационные системы