Интеллектуальные информационные системы

Автор работы: Пользователь скрыл имя, 19 Октября 2011 в 02:38, реферат

Краткое описание

Цель курсовой работы заключается в исследовании понятия системы искусственного интеллекта, прогнозирования на основе нейронных сетей в финансах и бизнесе, рассмотрение примеров применения нейронных сетей на практике:
Создание группы экспертов;
Покупка готовой заказной системы;
Создание собственной системы «с нуля»;
Создание системы на основе готовых «нейропакетов»;
Использование нейросетей в различных областях бизнеса и технологий.

Содержание работы

ВВЕДЕНИЕ 3
1 ПОНЯТИЕ "СИСТЕМА ИСКУССТВЕННОГО ИНТЕЛЛЕКТА" 5
1.1 Понятие и классификация систем искусственного интеллекта 7
2 ИСПОЛЬЗОВАНИЕ НЕЙРОСЕТЕЙ В ФИНАНСАХ И БИЗНЕСЕ 12
2.1 Прогнозирование на основе нейросетей 13
2.2 Преимущества и недостатки прогнозирования на нейросетях 15
2.3 Обзор программных продуктов 16
3 ПРИМЕНЕНИЕ НЕЙРОСЕТЕВЫХ ТЕХНОЛОГИЙ НА ПРАКТИКЕ 18
ЗАКЛЮЧЕНИЕ 23
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 25
ПРИЛОЖЕНИЕ А 27
ПРИЛОЖЕНИЕ Б 28

Содержимое работы - 1 файл

Интеллектуальные информационные системы.doc

— 170.00 Кб (Скачать файл)

       – распознавание, т.е. идентификацию (и  прогнозирование) состояний объектов, описанных признаками, друг с другом и с обобщенными образами классов;

       – измерение степени адекватности модели;

       решение обратной задачи идентификации и  прогнозирования (обеспечивается не всеми моделями).

       Автоматизированные  системы поддержки принятия решений:

       Системы поддержки принятия решений (СППР)  – это компьютерные системы, почти всегда интерактивные, разработанные, чтобы помочь менеджеру (или руководителю) в принятии решений управления, объединяя данные, сложные аналитические модели и удобное для пользователя программное обеспечение в единую мощную систему, которая может поддерживать слабоструктурированное и неструктурированное принятие решения. СППР находиться под управлением пользователя от начала до реализации и используется ежедневно. Предназначена для автоматизации выбора рационального варианта из исходного множества альтернативных в условиях многокритериальности и неопределенности исходной информации.

       Экспертные  системы:

       Экспертная  система (ЭС) – это программа, которая в определенных отношениях заменяет эксперта или группу экспертов в той или иной предметной области. ЭС предназначены для решения практических задач, возникающих в слабо структурированных и трудно формализуемых предметных областях.

       Исторически, ЭС были первыми системами искусственного интеллекта, которые привлекли внимание потребителей. Экспертные системы используются в маркетинге для сегментации рынка и выработке маркетинговых программ, а также в банковском деле для определения тенденции рынка, трейдинг для программирования котировок акций и валют, в аудите для подготовки заключений о финансовом состоянии предприятий.

       Генетические  алгоритмы и моделирование эволюции:

       Генетические  Алгоритмы (ГА) – это адаптивные методы функциональной оптимизации, основанные на компьютерном имитационном моделировании биологической эволюции. Генетический алгоритм - новейший способ решения задач оптимизации в экономике (см. Приложение А).

       Когнитивное моделирование:

       Это способ анализа, обеспечивающий определение  силы и направления влияния факторов на перевод объекта управления в целевое состояние с учетом сходства и различия в влиянии различных факторов на объект управления.

       Основана  на когнитивной структуризации предметной области, т.е. на выявление будущих  целевых и нежелательных состояний  объекта управления и наиболее существенных (базисных) факторов управления и внешней среды, влияющих на переход объекта в эти состояния, а также установление на качественном уровне причинно-следственных связей между ними, с учетом взаимовлияния факторов друг на друга.

       Результаты  когнитивной структуризации отображаются с помощью когнитивной карты (модели) (см. Приложение Б).

       В экономической сфере это позволяет  в сжатые сроки разработать и  обосновать стратегию экономического развития предприятия, банка, региона или даже целого государства с учетом влияния изменений во внешней среде; в сфере финансов и фондового рынка – учесть ожидания участников рынка.

       Выявление знаний из опыта (эмпирических фактов) и интеллектуальный анализ данных (data mining):

       Интеллектуальный  анализ данных (ИАД или data mining) – это процесс обнаружения в "сырых" данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Достижения технологии data mining активно используются в банковском деле для решения проблем Телекоммуникации, анализа биржевого рынка и др.

       Нейронные сети:

       Искусственная нейронная сеть (ИНС, нейросеть) - это набор нейронов, соединенных между собой. Как правило, передаточные функции всех нейронов в сети фиксированы, а веса являются параметрами сети и могут изменяться. Некоторые входы нейронов помечены как внешние входы сети, а некоторые выходы - как внешние выходы сети. Подавая любые числа на входы сети, мы получаем какой-то набор чисел на выходах сети. Практически любую задачу можно свести к задаче, решаемой нейросетью.

             Более подробно о  ИНС и ее применении в экономике  и финансах будет рассказано в  следующей главе.

 

2 ИСПОЛЬЗОВАНИЕ  НЕЙРОнных СЕТЕЙ В ФИНАНСАХ И БИЗНЕСЕ

       Нейронные сети появились в 40-х годах, однако в финансах и экономике использовать их начали лишь в конце 80-х, когда была доказана сходимость основных классов нейронных сетей и существенно улучшена точность распознавания.

       Основные  задачи применения нейронных сетей  в финансовом мире — прогнозирование  котировок основных инструментов (курсов валют, ценных бумаг, ГКО и др.) и распознавания определенных ситуаций (например, подозрительных операций с кредитной картой).

       Получение решения с помощью сети можно  разделить на следующие этапы: создание сети, ее обучение и собственно решение задачи.

       Сначала сеть строится, т. е. выбирается архитектура  сети, количество слоев, передаточные функции, начальные веса. Следующим  этапом является обучение, при котором  сети подаются на вход значения, с известными ответами, сеть принимает решение, и происходит корректировка весов в соответствии с правильностью принятого решения. Обучение продолжается до тех пор, пока результаты принятия решения сетью не станут удовлетворительными. После того, как сеть обучена, ее можно применять для решения практических задач. Важнейшая особенность человеческого мозга состоит в том, что, однажды обучившись определенному процессу, он может верно действовать и в тех ситуациях, в которых он не бывал в процессе обучения. Например, мы можем читать почти любой почерк, даже если видим его первый раз в жизни. Так же и нейросеть, грамотным образом обученная, может с большой вероятностью правильно реагировать на новые, не предъявленные ей ранее данные. Нейросетевой подход особенно эффективен в задачах экспертной оценки по той причине, что он сочетает в себе способность компьютера к обработке чисел и способность мозга к обобщению и распознаванию.

       Примером  сети, ориентированной на поиск зависимостей, можно привести нейросеть на основе методики МГУА (метод группового учета аргументов), которая позволяет на основе обучающей выборки построить зависимость одного параметра от других в виде полинома. Такая сеть может не только мгновенно выучить таблицу умножения, но и найти сложные скрытые зависимости в данных (например, финансовых), которые не обнаруживаются стандартными статистическими методами.

       Кластеризация - это разбиение разнородного набора примеров на несколько областей (кластеров), по каким-то общим признакам, причем число кластеров заранее неизвестно. Кластеризация позволяет представить неоднородные данные в более наглядном виде и использовать далее для исследования каждого кластера различные методы. Например, таким образом можно быстро выявить фальсифицированные страховые случаи или недобросовестные предприятия.

2.1 Прогнозирование на основе нейросетей

       Прогнозирование - это ключевой момент при принятии решений в управлении. Конечная эффективность любого решения зависит от последовательности событий, возникающих уже после принятия решения. Возможность предсказать неуправляемые аспекты этих событий перед принятием решения позволяет сделать наилучший выбор, который, в противном случае, мог бы быть не таким удачным. Поэтому системы планирования и управления, обычно, реализуют функцию прогноза. Далее перечислены примеры ситуаций, в которых полезно прогнозирование.

       Управление  материально-производственными запасами. В управлении запасами запасных частей на предприятии по ремонту самолетов  совершенно необходимо оценить степень  используемости каждой детали. На основе этой информации определяется необходимое количество запасных частей. Кроме того, необходимо оценить ошибку прогнозирования. Эта ошибка может быть оценена, например, на основе данных о времени, которое понадобилось для доставки деталей, которых не было на складе.

       Планирование  производства. Для того, чтобы планировать  производство семейства продуктов, возможно, необходимо спрогнозировать  продажу для каждого наименования продукта, с учетом времени доставки, на несколько месяцев вперед. Эти прогнозы для конечных продуктов могут быть потом преобразованы в требования к полуфабрикатам, компонентам, материалам, рабочим и т.д. Таким образом, на основании прогноза может быть построен график работы целой группы предприятий.

       Финансовое планирование. Финансового менеджера интересует, как будет изменяться денежный оборот компании с течением времени.

       Менеджер  может пожелать узнать, в какой  период времени в будущем оборот компании начнет падать, с тем, чтобы  принять соответствующее решение уже сейчас.

       Разработка  расписания персонала. Менеджер почтовой компании должен знать прогноз количества обрабатываемых писем, с тем, чтобы обработка производилась в соответствии с расписанием персонала и производительностью оборудования.

       Планирование  нового продукта. Решение о разработке нового продукта обычно требует долговременного прогноза того, каким спросом он будет пользоваться. Этот прогноз не менее важен, чем определение инвестиций необходимых для его производства.

       Управление  технологическим процессом. Прогнозирование также может быть важной частью систем управления технологическими процессами. Наблюдая ключевые переменные процесса и используя их для предсказания будущего поведения процесса, можно определить оптимальное время и длительность управляющего воздействия. Например, некоторое воздействие в течение часа может повышать эффективность химического процесса, а потом оно может снижать эффективность процесса. Прогнозирование производительности процесса может быть полезно при планировании времени окончания процесса и общего расписания производства.

2.2 Преимущества и недостатки прогнозирования на нейросетях

       Прогнозирование на НС обладает рядом недостатков. Даже при прогнозировании требования на достаточно стабильный продукт на основе информации о ежемесячных продажах, возможно мы не сможем накопить историю за период от 50 до 100 месяцев. Для сезонных процессов проблема еще более сложна. Каждый сезон истории фактически представляет собой одно наблюдение. То есть, в ежемесячных наблюдениях за пять лет будет только пять наблюдений за январь, пять наблюдений за февраль и т.д. Может потребоваться информация за большее число сезонов для того, чтобы построить сезонную модель. Однако, необходимо отметить, что мы можем построить удовлетворительную модель на НС даже в условиях нехватки данных. Модель может уточняться по мере того, как свежие данные становится доступными.

       Другим  недостатком нейронных моделей  — значительные затраты по времени  и другим ресурсам для построения удовлетворительной модели. Эта проблема не очень важна, если исследуется небольшое число временных последовательностей. Тем не менее, обычно прогнозирующая система в области управления производством может включать от нескольких сотен до нескольких тысяч временных последовательностей.

       Однако, несмотря на перечисленные недостатки, модель обладает рядом достоинств. Существует удобный способ модифицировать модель по мере того, как появляются новые наблюдения. Модель хорошо работает с временными последовательностями, в которых мал интервал наблюдений, т.е. может быть получена относительно длительная временная последовательность. По этой причине модель может быть использована в областях, где нас интересуют ежечасовые, ежедневные или еженедельные наблюдения. Эти модели также используются в ситуациях, когда необходимо анализировать небольшое число временных последовательностей.

2.3 Обзор программных продуктов

       В данной главе приведены краткие  характеристики наиболее распространенных программных продуктов.

       NeuroShell 2 - программная среда с дружественным и интуитивно понятным интерфейсом, в которой реализованы наиболее распространенные и эффективные нейросетевые архитектуры. Этот программный продукт удовлетворит и новичка, и профессионала. NeuroShell сопровождает целая серия дополнений, которые могут существенно упростить решение ряда специфических задач.

       GeneHunter - "охотник за генами" использует  генетические алгоритмы для решения  сложных, очень сложных и очень-очень  сложных комбинаторных и оптимизационных  задач. GeneHunter является надстройкой  Microsoft Excel, т.е. пользователь решает свои задачи непосредственно из рабочего листа, содержащего данные. Кроме того, в состав GeneHunter входит динамическая библиотека функций генетических алгоритмов, совместимая с NeuroWindows, что позволяет пользователю создавать мощные гибридные системы, сочетающие нейронные сети и генетические алгоритмы.

Информация о работе Интеллектуальные информационные системы