Автор работы: Пользователь скрыл имя, 06 Января 2011 в 13:18, реферат
Любая информационная система (ИС) выполняет следующие функции: воспринимает вводимые пользователем информационные запросы и необходимые исходные данные, обрабатывает введенные и хранимые в системе данные в соответствии с известным алгоритмом и формирует требуемую выходную информацию. С точки зрения реализации перечисленных функций ИС можно рассматривать как фабрику, производящую информацию, в которой заказом является информационный запрос, сырьем - исходные данные, продуктом - требуемая информация, а инструментом (оборудованием) - знание, с помощью которого данные преобразуются в информацию.
Первые два этапа разработки экспертной системы составляют логическую стадию, не связанную с применением четко определенного инструментального средства. Последующие этапы реализуются в рамках физического создания проекта на базе выбранного инструментального средства. Вместе с тем, процесс создания экспертной системы, как сложного программного продукта, имеет смысл выполнять методом прототипного проектирования, сущность которого сводится к постоянному наращиванию базы знаний, начиная с логической стадии. Технология разработки прототипов представлена в таблице 2.2.
Таблица 2.2.
|
Прототипная технология создания экспертной системы означает, что простейший прототип будущей системы реализуется с помощью любого подручного инструментального средства еще на этапах идентификации и концептуализации, в дальнейшем этот прототип детализируется, концептуальная модель уточняется, реализация выполняется в среде окончательно выбранного инструментального средства. После каждого этапа возможны итеративные возвраты на уже выполненные этапы проектирования, что способствует постепенному проникновению инженера по знаниям в глубину решаемых проблем, эффективности использования выделенных ресурсов, сокращению времени разработки, постоянному улучшению компетентности и производительности системы.
Пример разработки экспертной системы гарантирования (страхования) коммерческих займов CLUES (loan-uderwriting expert systems) [ 21 ] представлен в таблице 2.3. Эта система создавалась в интегрированной среде ART группой разработчиков в составе одного менеджера проекта, двух инженеров по знаниям, двух программистов, ответственных за сопряжение ЭС с существующей информационной системой и аналитическим инструментом, одного контролера качества. Сложность созданной системы: 1000 правил, 180 функций, 120 объектов. Эффективность: при оценке 8500 кредитов в месяц годовая экономия на обработке информации составляет 0,91 млн. долл., при 30000 кредитов - 2,7 млн. долл. При этом в 50% случаев система принимает самостоятельные решения, в остальных случаях дает экспертам диагностику возникающих проблем. Время оценки кредита сократилось с 50 минут до 10-15 минут. Перечисленные показатели эффективности позволили компании Contrywide расширить сферу своей деятельности во всех штатах США и увеличить оборот с 1 млрд. долл. в месяц в 1991 году до 5 млрд. долл. в 1993 году.
2.2. Идентификация проблемной области
Этап идентификации проблемной области включает определение назначения и сферы применения экспертной системы, подбор экспертов и группы инженеров по знаниям, выделение ресурсов, постановку и параметризацию решаемых задач.
Начало работ по созданию экспертной системы инициируют руководители компаний (предприятий, учреждений). Обычно необходимость разработки экспертной системы в той или иной сфере деятельности связана с затруднениями лиц, принимающих решение, что сказывается на эффективности функционирования проблемной области. Эти затруднения могут быть обусловлены недостаточным опытом работы в данной области, сложностью постоянного привлечения экспертов, нехваткой трудовых ресурсов для решения простых интеллектуальных задач, необходимостью интеграции разнообразных источников знаний. Как правило, назначение экспертной системы связано с одной из следующих областей:
Таблица 2.3.
|
Сфера применения экспертной системы характеризует тот круг задач, который подлежит формализации, например, "оценка финансового состояния предприятия", "выбор поставщика продукции", "формирование маркетинговой стратегии" и т.д. Обычно сложность решаемых в экспертной системе проблем должна соответствовать трудоемкости работы эксперта в течение нескольких часов. Более сложные задачи имеет смысл разбивать на совокупности взаимосвязанных задач, которые подлежат разработке в рамках нескольких экспертных систем.
Ограничивающими факторами на разработку экспертной системы выступают отводимые сроки, финансовые ресурсы и программно-техническая среда. От этих ограничений зависит количественный и качественный состав групп инженеров по знаниям и экспертов, глубина прорабатываемых вопросов, адекватность и эффективность решения проблем. Обычно различают три стратегии разработки экспертных систем (таблица 2.4) [18, 20]:
После предварительного определения контуров разрабатываемой экспертной системы инженеры по знаниям совместно с экспертами осуществляют более детальную постановку проблем и параметризацию системы. К основным параметрам проблемной области относятся следующие:
Стратегии разработки экспертных систем
Таблица 2.4.
|
2.3. Построение концептуальной модели
На
этапе построения концептуальной модели
создается целостное и
Результат концептуализации проблемной области обычно фиксируется в виде наглядных графических схем на объектном, функциональном и поведенческом уровнях моделирования:
Первые две модели описывают статические аспекты функционирования проблемной области, а третья модель - динамику изменения ее состояний. Естественно, что для различных классов задач могут требоваться разные виды моделей, а следовательно, и ориентированные на них методы представления знаний. Рассмотрим каждую из представленных видов моделей.
Объектная модель отражает фактуальное знание о составе объектов, их свойств и связей. Элементарной единицей структурного знания является факт, описывающий одно свойство или одну связь объекта, который представляется в виде триплета:
предикат (Объект, Значение).
Если предикат определяет название свойства объекта, то в качестве значения выступает конкретное значение этого свойства, например:
профессия ("Иванов", "Инженер").
Если предикат определяет название связи объекта, то значению соответствует объект, с которым связан первый объект, например:
Работает ("Иванов", "Механический цех" ).
В
качестве важнейших типизированных
видов отношений
“род” - “вид” (обобщение);
“целое” - “часть” (агрегация);
“причина” - “следствие”;
“цель” - “средство”;
“функция” - “аргумент”;
“ассоциация”;
“хронология”;
“пространственное положение” и др.
Так, отношения обобщения ("род" - "вид") фиксируется на уровне названий классов объектов, например:
есть-подкласс (Инженеры, Личности).
Под классом объектов понимается совокупность объектов с одинаковым набором предикатов (свойств и связей). Класс объектов часто описывается в виде n-арного реляционного отношения, например: