Автор работы: Пользователь скрыл имя, 21 Января 2012 в 23:34, курсовая работа
Аппроксимация (от латинского "approximate" -"приближаться")- приближенное выражение каких-либо математических объектов (например, чисел или функций) через другие более простые, более удобные в пользовании или просто более известные. В научных исследованиях аппроксимация применяется для описания, анализа, обобщения и дальнейшего использования эмпирических результатов.
Оглавление.
Введение. 4
1. Постановка задачи. 6
2. Расчетные формулы. 7
2.1 Построение эмпирических формул методом наименьших квадратов 7
2.2 Линеаризация экспоненциальной зависимости. 9
2.3 Элементы теории корреляции. 10
3. Расчет коэффициентов аппроксимации в Microsoft Excel. 13
4. Построение графиков в Excel и использование функции ЛИНЕЙН. 21
5. Программа на языке Pascal. 24
5.1. Блок-схема. 24
5.2. Результаты расчета Pascal. 29
Заключение. 30
Список литературы. 31
где .
Решив систему, найдем , .
После потенцирования получим .
Таким образом, экспоненциальная аппроксимация имеет вид
.
Решение системы проводили, пользуясь средствами Microsoft Excel. Результаты представлены в таблице 5.
Таблица 5
Результаты коэффициентов экспоненциальной аппроксимации.
В таблице 5 в ячейках D45:E46 записана формула {=МОБР(D42:943)}.
В ячейках G45:G46 записана формула {=МУМНОЖ(D45:E46;F42:F43)}.
В ячейке G47 записана формула =EXP(G45).
Вычислим среднее арифметическое и по формулам:
Результаты расчета и средствами Microsoft Excel представлены в таблице 6.
Таблица 6
Вычисление средних значений X и Y.
В ячейке F49 записана формула =A26/25.
В ячейке F50 записана формула =B26/25.
Для
того, чтобы рассчитать коэффициент
корреляции и коэффициент
Таблица 7
Вычисление остаточных сумм.
Поясним как таблица 7 составляется.
Ячейки A2:A27 и B2:B27 уже заполнены (см. табл. 2).
Далее делаем следующие шаги.
Шаг
1. В ячейку J2 вводим формулу =(A2-$F$49)*(B2-$F$50)
Шаг 2. В ячейки J3:J26 эта формула копируется.
Шаг 3. В ячейку K2 вводим формулу =(A2-$F$49)^2.
Шаг 4. В ячейки K3:K26 эта формула копируется.
Шаг 5. В ячейку L2 вводим формулу =(B2-$F$50)^2.
Шаг 6. В ячейки L3:L26 эта формула копируется.
Шаг 7. В ячейку M2 вводим формулу =($D$37+$D$38*A2-B2)^2.
Шаг 8. В ячейки M3:M26 эта формула копируется.
Шаг 9. В ячейку N2 вводим формулу
=($I$
Шаг 10. В ячейки N3:N26 эта формула копируется.
Шаг 11. В ячейку O2 вводим формулу
=($G$
Шаг 12. В ячейки O3:O26 эта формула копируется.
Последующие шаги делаем с помощью автосуммирования .
Шаг 13. В ячейку J27 вводим формулу =СУММ(J2:J26).
Шаг 14. В ячейку K27 вводим формулу =СУММ(K2:K26).
Шаг 15. В ячейку L27 вводим формулу =СУММ(L2:L26).
Шаг 16. В ячейку M27 вводим формулу =СУММ(M2:M26).
Шаг 17. В ячейку N27 вводим формулу =СУММ(N2:N26).
Шаг 18. В ячейку O27 вводим формулу =СУММ(O2:O26).
Теперь проведем расчеты коэффициента корреляции по формуле
(только для линейной аппроксимации)
и коэффициента детерминированности по формуле . Результаты расчетов средствами Microsoft Excel представлены в таблице 8.
Таблица 8
Результаты расчета.
В таблице 8 в ячейке D53 записана формула =J27/(K27*L27)^(1/2).
В ячейке D54 записана формула =1- M27/L27.
В ячейке D55 записана формула =1- N27/L27.
В ячейке D56 записана формула =1- O27/L27.
Анализ результатов расчетов показывает, что квадратичная аппроксимация наилучшим образом описывает экспериментальные данные.
Рассмотрим результаты эксперимента, приведенные в исследованном выше примере.
Исследуем характер зависимости в три этапа:
Рис.4.1.
График зависимости
y от x
Рис.4.2. График линейной аппроксимации
Рис.4.3. График квадратичной аппроксимации.
Рис.4.4. График экспоненциальной аппроксимации.
Примечание: Полученное при построении линии тренда значение коэффициента детерминированности для экспоненциальной зависимости не совпадает с истинным значением , поскольку при вычислении коэффициента детерминированности используются не истинные значения , а преобразованные значения с дальнейшей линеаризацией.
Таблица 9
Рис.5.1. Блок-схема
program Kramer;
uses CRT;
const
n=25;
type
TArrayXY = array[1..2,1..n] of real;
TArray = array[1..n] of real;
var
SumX,SumY,SumX2,SumXY,SumX3,
OPRlin,OPRkvadr,OPRa1,OPRa2,
a1lin,a2lin,a1kvadr,a2kvadr,
Xsr,Ysr,S1,S2,S3,Slin,Skvadr,
Kkor,KdetLin,KdetKvadr,
i:byte;
const
ArrayXY:TArrayXY=((12.85,12.
145.59,108.37,100.76,98.32,81.
begin
ClrScr;
SumX:=0.0;
SumY:=0.0;
SumXY:=0.0;
SumX2:=0.0;
SumX3:=0.0;
SumX4:=0.0;
SumX2Y:=0.0;
SumLnY:=0.0;
SumXLnY:=0.0;
{ Вычисление сумм x, y, x*y, x^2, x^3, x^4, (x^2)*y, Ln(y), x*Ln(y) }
for i:=1 to n do
begin
SumX:=SumX+ArrayXY[1,i];
SumY:=SumY+ArrayXY[2,i];
SumXY:=SumXY+ArrayXY[1,i]*
SumX2:=SumX2+sqr(ArrayXY[1,i])
SumX3:=SumX3+ArrayXY[1,i]*
SumX4:=SumX4+sqr(ArrayXY[1,i])
SumX2Y:=SumX2Y+sqr(ArrayXY[1,
SumLnY:=SumLnY+ln(ArrayXY[2,i]
SumXLnY:=SumXLnY+ArrayXY[1,i]*
end;
{ Вычисление коэффициентов }
OPRlin:=0.0;
a1lin:=0.0;
a2lin:=0.0;
a1kvadr:=0.0;
OPRkvadr:=0.0;
a2kvadr:=0.0;
a2kvadr:=0.0;
a1exp:=0.0;
a2exp:=0.0;
OPRlin:=n*SumX2-SumX*SumX;
a1lin:=(SumX2*SumY-SumX*SumXY)
a2lin:=(n*SumXY-SumX*SumY)/
OPRkvadr:=n*SumX2*SumX4+SumX*
a1kvadr:=(SumY*SumX2*SumX4+
a2kvadr:=(n*SumXY*SumX4+SumY*
a3kvadr:=(n*SumX2*SumX2Y+SumX*
a2exp:=(n*SumXLnY-SumX*SumLnY)
cexp:=(SumX2*SumLnY-SumX*
a1exp:=exp(cexp);
{ Вычисление средних арифметических x и y }
Xsr:=SumX/n;
Ysr:=SumY/n;
S1:=0.0;
S2:=0.0;
S3:=0.0;
Slin:=0.0;
Skvadr:=0.0;
Sexp:=0.0;
Kkor:=0.0;
KdetLin:=0.0;
KdetKvadr:=0.0;
KdetExp:=0.0;
for i:=1 to n do
begin
S1:=S1+(ArrayXY[1,i]-Xsr)*(
S2:=S2+sqr(ArrayXY[1,i]-Xsr);
S3:=S3+sqr(ArrayXY[2,i]-Ysr);
Slin:=Slin+sqr(a1lin+a2lin*
Skvadr:=Skvadr+sqr(a1kvadr+
Sexp:=Sexp+sqr(a1exp*exp(
end;
{ Вычисление
коэффициентов корреляции и
Kkor:=S1/sqrt(S2*S3);
KdetLin:=1-Slin/S3;
KdetKvadr:=1-Skvadr/S3;
KdetExp:=1-Sexp/S3;
{ Вывод результатов }
WriteLn('Линейная функция');
WriteLn('a1=',a1lin:8:5);
WriteLn('a2=',a2lin:8:5);
WriteLn('Квадратичная функция');
WriteLn('a1=',a1kvadr:8:5);
WriteLn('a2=',a2kvadr:8:5);
WriteLn('a3=',a3kvadr:8:5);
WriteLn('Экспоненциальная функция');
WriteLn('a1=',a1exp:8:5);
WriteLn('a2=',a2exp:8:5);
WriteLn('c=',cexp:8:5);
WriteLn('Xcp=',Xsr:8:5);
WriteLn('Ycp=',Ysr:8:5);
WriteLn('Коэффициент корреляции ',Kkor:8:5);
WriteLn('Коэффициент
детерминированности (линейная
WriteLn('Коэффициент
детерминированности (
WriteLn('Коэффициент
детерминированности (
end.
Коэффициенты линейной функции
a1=-24.73516
a2=11.63471
Коэффициенты квадратичной функции
a1= 1.59678
a2=-0.62145
a3= 0.95543
Коэффициенты экспоненциальной функции
a1= 1.65885
a2= 0.40987
c= 0.50613
Xcp= 6.52320
Ycp=51.16040
Коэффициент корреляции 0.96196
Коэффициент детерминированности (линейная аппроксимация) 0.92537
Коэффициент детерминированности (квадратическая аппроксимация) 0.99409
Коэффициент детерминированности (экспоненциальная аппроксимация) 0.02691
Информация о работе Аппроксимация функций методом наименьших квадратов