Автор работы: Пользователь скрыл имя, 27 Января 2013 в 13:24, курсовая работа
Движение денежных средств фирмы представляет собой непрерывный процесс. Для каждого направления использования денежных фондов должен быть соответствующий источник. В широком смысле активы фирмы представляют собой чистое использование денежных средств, а пассивы и собственный капитал - чистые источники. Для действующего предприятия реально не существует начальной и конечной точки.
Введение ……………………………………………………………………3
Содержание и методика управления денежными средствами предприятия ……………………………………………………………5
Цели и организация управления денежными потоками предприятия ………………………………………………………..5
Модели и приемы целевого регулирования денежных потоков ...7
Анализ движения денежных средств ………………………………..11
Состав и анализ притоков и оттоков денежных средств по направлению деятельности, анализ взаимодействия денежных потоков ……………………………………………………………..11
Прогнозирование и оптимизация денежной наличности ……….15
Определение оптимального уровня денежных средств…………19
Совершенствование управления денежными средствами предприятия……………………………………………………………26
Оценка потоков постнумерандо и пренумерандо……………….26
Оценка аннуитетов…………………………………………………30
Заключение ……………………………………………………………….38
Список использованной литературы………………………………….…39
ОЦЕНКА ПОТОКА ПОСТНУМЕРАНДО
Прямая задача предполагает оценку с позиции будущего, т.е. на конец периода и, когда реализуется схема наращения.
Таким образом, будущая стоимость исходного денежного потока постнумерандо может быть оценена как сумма наращенных поступлений, т.е. в общем виде формула имеет вид:
Обратная задача подразумевает
оценку с позиции текущего момента,
т.е. на конец периода О. В этом
случае реализуется схема
Таким образом, приведенный денежный поток для исходного потока постнумерандо имеет вид:
Приведенная стоимость денежного потока постнумерандо в общем случае может быть рассчитана по формуле:
Если использовать дисконтирующий множитель, то эту формулу можно переписать в следующем виде:
Пример
Рассчитать приведенную стоимость денежного потока постнумерандо (тыс. руб.): 12, 15, 9, 25, если коэффициент дисконтирования r = 12%.
Год |
Денежный поток |
R |
Привед-й поток |
1 |
12 |
0,8929 |
10,71 |
2 |
15 |
0,7972 |
11,96 |
3 |
9 |
0,7118 |
6,41 |
4 |
25 |
0,6355 |
15,89 |
61 |
44,97 |
ОЦЕНКА ПОТОКА ПРЕНУМЕРАНДО
Логика оценки денежного
потока в этом случае аналогии вышеописанной;
некоторое расхождение в
Приведенный денежный поток пренумерандо имеет вид:
Приведенная стоимость потока пренумерандо в общем виде может быть рассчитана по формуле:
Так, если в предыдущей задаче предположить, что исходный поток представляет собой поток пренумерандо, его приведенная стоимость будет равна: Pvpre = PVpst*(1+r)=44,97*1,12=50,37 тыс. руб.
3.2. ОЦЕНКА АННУИТЕТОВ
Одним из ключевых понятий в финансовых и коммерческой расчетах является понятие аннуитета. Логика, заложенная в схему аннуитетных платежей, широко используется при оценке долговых и долевых ценных бумаг, в анализе инвестиционных проектов, а также в анализе аренды.
ОЦЕНКА СРОЧНЫХ АННУИТЕТОВ
Аннуитет представляет собой частный случай денежного потока, а именно, это поток, в котором денежные поступления в каждом периоде одинаковы по величине. Если число равных временных интервалов ограничено, аннуитет называется срочным. В этом случаи:
С1 = С2 = …… = Сn = A
Примером срочного аннуитета постнумерандо могут служить регулярно поступающие рентные платежи за пользование сданным в аренду земельным участком в случае, если договором предусматривается регулярная оплата аренды по истечении очередного периода. В качестве срочного аннуитета пренумерандо выступает, например, схема периодических денежных вкладов на банковский счет в начале каждого месяца с целью накопления достаточной суммы для крупной покупки.
Для оценки будущей и приведенной
стоимости аннуитета можно
Прямая задача оценки срочного аннуитета при заданных величинах регулярного поступления (А) и процентной ставке (r) предполагает оценку будущей стоимости аннуитета. Как следует из логики, присущей схеме аннуитета, наращенный денежный поток имеет вид:
а расчетная формула
Входящий в формулу мультиплицирующий множитель FMЗ(r,n) представляет собой сумму членов геометрической прогрессии:
где (q = 1 -r). Сделав преобразования можно найти, что:
Экономический смысл мультиплицирующего множителя FМ заключается в следующем: он показывает, чему будет равна суммарная величина срочного аннуитета в одну денежную единицу (например, один рубль) к концу срока его действия. Предполагается, что производится лишь начисление денежных сумм, а их изъятие может быть сделано по окончании срока действия аннуитета. Множитель FM часто используется в финансовых вычислениях, и поскольку легко заметить, что значения в общем виде зависят лишь от r и n, их можно табулировать.
Пример
Вам предлагают сдать в аренду участок на три года и выбрать один из двух вариантов оплаты аренды: а) 10 млн.руб. в конце каждого года; б) 35 млн.руб. в конце трехлетнего периода. Какой вариант более предпочтителен, если банк предлагает 20% годовых по вкладам?
Первый вариант оплаты как раз и представляет собой аннуитет постнумерандо при n = 3 и А = 10 млн. руб. В этом случаи имеется возможность ежегодного получения арендного платежа и инвестирования полученных сумм как минимум на условною 20% годовых (например, вложение в банк). К концу трехлетнего периода накопленная сумма может быть рассчитана:
FV = А*FМЗ(20%, 3) = 10*3,640 = 36,4 млн. руб.
Таким образом, расчет показывает, что вариант (а) более выгоден.
Общая постановка обратной задачи оценки срочного аннуитета постнумерандо также достаточно наглядна. В этом случае производится оценка будущих денежных поступлений с позиции текущего момента, под которым в данном случае понимается момент времени, с которого начинают отсчитываться равные временные интервалы, входящие в аннуитет.
Экономический смысл расчетов по предыдущей задаче состоит в следующем: с позиции текущего момента реальная стоимость данного аннуитета может быть оценена в 21,064 млн. руб.
Общая формула для оценки текущей стоимости срочного аннуитета постнумерандо выводится из базовой формулы и имеет вид:
тогда,
Экономический смысл дисконтирующего множителя FM4(r,n) заключается в следующем: он показывает, чему равна с позиции текущего момента величина аннуитета с регулярными денежными поступлениями в размере одной денежной единицы (например, один рубль), продолжающегося n равных периодов с заданной процентной ставкой r.
Пример
Предложено инвестировать 100 млн.руб. на срок 5 лет при условии возврата этой суммы частями (ежегодно по 20 млн. руб.). По истечении 5 лет выплачивается дополнительное вознаграждение в размере 30 млн. руб. Принимать ли это предложение, если можно «безопасно» депонировать деньги в банк из расчета 12% годовых?
Для принятия решения необходимо рассчитать и сравнить две суммы. При депонировании денег в банк к концу пятилетнего периода на счете будет сумма:
В отношении альтернативного варианта, предусматривающего возмещение вложенной суммы частями, предполагается, что ежегодные поступления в размере 20 млн. руб. можно немедленно пускать в оборот, получая дополнительные доходы. Если нет других альтернатив по эффективному использованию этих сумм, их можно депонировать в банк. Денежный поток в этом случае можно представить двояко:
а) как срочный аннуитет постнумерандо с А = 20, n = 5, r = 20% и единовременное получение суммы в 30 млн. руб.;
б) как срочный аннуитет пренумерандо с А = 20, n = 4, r = 20% и единовременное получение сумм в 20 и 30 млн. руб. В первом случае имеем:
Во втором случае на основании формулы имеем:
Естественно, что оба варианта привели к одинаковому ответу. Таким образом, общая сумма капитала к концу пятилетнего периода будет складываться из доходов от депонирования денег в банке (107,06 млн. руб.), возврата доли от участия в венчурном проекте за последний год (20 млн. руб.) и единовременного вознаграждения (30 млн. руб.). Общая сумма составит, следовательно, 157,06 млн. руб. Предложение экономически нецелесообразно.
МЕТОД ДЕПОЗИТНОЙ КНИЖКИ
Можно дать иную интерпретацию
расчета текущей стоимости
Пример
В банке получена ссуда на пять лет в сумме 20000 дол, под 13% годовых, начисляемых по схеме сложных процентов на непогашенный остаток. Возвращать нужно равными суммами в конце каждого года. Требуется определить величину годового платежа.
Для лучшего понимания логики метода депозитной книжка целесообразно рассуждать с позиции кредитора. Для банка данный контракт представляет собой инвестицию в размере 20000 дол., т.е. отток денежных средств, что и показано на схеме. В дальнейшем в течение пяти лет банк будет ежегодно получать в конце года сумму А, причем каждый годовой платеж будет включать проценты за истекший год и часть основной суммы долга. Так, поскольку в течение первого года заемщик пользовался ссудой в размере 20000 дол., то платеж, который будет сделав в конце этого года, состоит из двух частей: процентов за год в сумме 2600 дол. (13% от 20000) и погашаемой части долга в сумме (А - 2600 дол). В следующем году расчет будет повторен при условии, что размер кредита, которым пользуется заемщик, составит уже меньшую сумму по сравнению с первым годом, а именно: (20000-А + 2600). Отсюда видно, что с течением времени сумма процентов снижается, а доля платежа возрастает. Данный финансовый контракт можно представить в виде аннуитета постнумерандо, в котором известна его текущая стоимость, процентная ставка и продолжительность действия. Поэтому для нахождения величины годовою платежа А можно воспользоваться известной формулой.
Динамика платежей показана в Таблице. Отметим, что данные в ходе вычислений округлялись, поэтому величина процентов в последней строке найдена балансовым методом.
Год |
Остаток ссуды на начало года |
Сумма годового платежа |
В том числе |
Остаток на конец года | |
Проценты за год |
Погашенная часть долга | ||||
1 |
2000 |
5687 |
2600 |
3087 |
16913 |
2 |
16913 |
5687 |
2199 |
3488 |
13425 |
3 |
13425 |
5687 |
1745 |
3942 |
9483 |
4 |
9483 |
5687 |
1233 |
4454 |
5029 |
5 |
5029 |
5687 |
658 |
5029 |
0 |
Данная таблица позволяет ответить на целый ряд дополнительных вопросов, представляющих определенный интерес для прогнозирования денежных потоков. В частности, можно рассчитать общую сумму процентных платежей, величину процентного платежа в 1-м периоде, долю кредита, погашенную в первые 11 лет, и т.п.
ОЦЕНКА АННУИТЕТА С ИЗМЕНЯЮЩЕЙСЯ ВЕЛИЧИНОЙ ПЛАТЕЖА
На практике возможны ситуации, когда величина платежа меняется со временем в сторону увеличения или уменьшения. В частности, при заключении договоров аренды в условиях инфляции может предусматриваться периодическое увеличение платежа, компенсирующее негативное влияние изменения цен. Оценка аннуитета в этом случае может также выполняться путем несложных расчетов с помощью финансовых таблиц. Технику вычислений рассмотрим на простейшем примере.[7]
Пример
Сдан участок в аренду на десять лет. Арендная плата будет осуществляться ежегодно по схеме постнумерандо на следующих Условиях: в первые шесть лет по 10 млн. руб., в оставшиеся четыре года по 11 млн. руб. Требуется оценить приведенную стоимость этого договора, если процентная ставка, используемая аналитиком, равна 15%.
Решать данную задачу можно различными способами в зависимости от того, какие аннуитеты будут выделены аналитиком.
Прежде всего отметим, что приведенная стоимость денежного потока должна оцениваться с позиции начала первого временного интервала. Рассмотрим лишь два варианта решения из нескольких возможных. Все эти варианты основываются на свойстве аддитивности рассмотренных алгоритмов в отношении величины аннуитетного платежа.