Шпаргалки по "Экономики"

Автор работы: Пользователь скрыл имя, 07 Января 2011 в 14:56, шпаргалка

Краткое описание

работа содержит ответы на вопросы по дисциплине "Экономика".

Содержимое работы - 1 файл

Эконометрика (шпоры).doc

— 379.00 Кб (Скачать файл)

5,определения влияния отдельных факторов на исследуемую величину;

6,экономический прогноз.

7,Выбор системы ведущих факторов для исследования.

При построении системы факторов необходимо соблюдать следующие условия: 1) должны быть количественно измеримы; 2) теоретически обоснованы; 3) линейно независимы друг от друга; 4) одна модель не должна включать в себя совокупный фактор и факторы  его образующие; 5) тесно связаны между собой. Для реализации 5-го требования строят матрицу коэф-в парной корреляции. На основании этой матрицы выбирают те факторы, связь которых с величиной наиболее тесная. Затем проверяют наличие мультиколлинеарности (МК) факторов. Два фактора МК, если . МК факторы нельзя включать в одну модель, нужно выбрать один из них или заменить оба совокупной функцией.

  1. Оценка параметров.
  2. yi=a0+a1xi1+a2xi2+…+amxim+ei

Запишем уравнение (1) в матричном виде (2) – y=aX+e;

. Для решения уравнения (2) применяют МНК, который дает  матричную формулу: а=(ХТХ)-1ХТУ, ХТ – транспонированная матрица факторов, (ХТХ)-1 – обратная матрица.

  1. Оценка качественных характеристик модели.

Оценка  значимости уравнения множественной регрессии проводится в полном соответствии с процедурой, применимой к парной модели, т.е. на основе F-критерия Фишера. Для оценки значимости параметров применяют t-критерий Стьюдента: , bjj – диагональный элемент матрицы (ХТХ)-1.

Если  , то параметр аj считается статистически значимым. Если какой-либо параметр окажется не значим, то его нужно либо исключить, либо заменить другим.

  1. Оценка качества модели.

Этот  этап схож с процедурой проверки качества парной модели. Основную информацию получают из ряда остатков. Также проверяют 5 предпосылок МНК, но  в случае 5 предпосылки (проверка гомоскедастичности) будут некоторые отличия. График остатков в случае множественной модели регрессии будет иметь несколько иной вид. По оси абсцисс можно отложить фактические данные показателя у. Для тестирования на гомоскедастичность можно применить тест Голдфельда-Квандта. Отличие будет только на 1 шаге: фактические данные факторов следует упорядочить по возрастанию показателя у. Для каждой совокупности строят модель множественной регрессии. Коэф-т детерминации в случае множ. регрессии также будет универсальной характеристикой качества, т.к. позволяет оценить точность модели, качество в целом, удачность выбора фактора. Однако, когда число факторов больше 1, коэф-т детерминации меняется. Поэтому определяют нормированный, который определяется по формуле . Свойство этого коэф-та аналогично свойствам R2. Показывает, какая доля случайных колебаний показателя у учтена в модели и обусловлена случайными колебаниями фактора. находится в интервале (0;1) и модель тем лучше, чем стремится к 1 (100 %).

Проверка  5 предпосылок МНК: 1.случайный характер остатков (критерий поворотных точек), 2.независимость уровней в ряде остатков (d-критерий Дарбина-Уотсона), 3.соответствие ряда остатков нормальному закону распределения(RS-критерий), 4.равенство 0 мат. ожидания остатков, 5.гомоскедастичность остатков.

1.Свойство случайности проверяется с помощью критерия поворотных точек или критерия пиков. Уровень в ряде остатков называется поворотной точкой, если он одновременно больше или одновременно меньше 2-ух соседних с ним уровней. Точкам поворота приписывают значения 1, остальным – 0. Свойство случайности выполняется, если количество поворотных точек справа означает, что от выражения внутри них нужно взять целую часть. n – количество уровней в ряде.

2.Для проверки свойства независимости (отсутствие автокорреляции) уровней в ряде остатков используют d-критерий Дарбина-Уотсона. В начале рассчитывают величину d по формуле: . Для этого критерия задаются 2 таблич. границы d1 и d2.

3.Для проверки соответствия ряда остатков нормальному закону распределения используют RS-критерий: RS =(Emax-Emin)/SE. Emax и Emin- соотв. наибольшее и наименьшее значения уровней в ряде остатков. SE- СКО. Если значение RS попадает в табличный интервал, то ряд остатков распределен по норм. закону.

  1. Оценка влияния отдельных факторов на исследуемую величину.

Коэф-ты корреляции также как и коэф-ты регрессии позволяют определить  влияние факторов на показатели, но они не распределяют факторы по степени  влияния. Для решения этой задачи используются 3 специальных коэф-та: 1. коэф-т эластичности; 2. коэф-т; 3. коэф-т.

1. . Этот коэф-т показывает, на сколько % изменится исследуемая величина при изменении соответствующего фактора на 1 %. Если эj<0, то связь между переменными обратная.

2. . коэф-т показывает, на какую часть своего СКО изменится исследуемая величина при изменении фактора на 1 СКО. Если j<0 , то между переменными связь обратная. Имеет широкое распространение в теории рисковых ситуаций.

3. rj – коэф-т парной корреляции. коэф-т показывает среднюю долю влияния j фактора в совокупном влиянии всех факторов.

6. Прогнозирование. 

1.Прогноз факторов либо моделями экстраполяции, либо по заданному правилу (xjпр.);

2.Точечный прогноз показателя: 3.Построение доверительного интервала прогноза:

                                    

                  Нижняя граница: упр-U; верхняя граница: упр+U.

19. Системы линейных  одновременных уравнений  (СОУ). Взаимозависимые  и рекурсивные  системы.

Регрессионное уравнение устанавливает зависимость  одной величины от совокупности факторов. Как правило, нас может интересовать целый ряд величин у1, у2, у3…, которые зависят как от факторов, так и между собой. Для отображения такой паутины взаимосвязей используются системы уравнений. Они бывают 3 видов: 1. системы независимых уравнений; 2. рекурсивные системы; 3. системы взаимозависимых уравнений.

Рекурсивные системы:

Первое  уравнение в таких системах является моделью множественной регрессии. В каждом последующем будут содержаться  как все независимые факторы, так и зависимые переменные, оцененные  ранее (предопределенные). Такие системы могут использоваться для анализа производительности труда и фондоотдачи.

Системы взаимозависимых уравнений: Эти системы используют для анализа динамики цены и зарплаты.

20. Оценка качества  модели парной  регрессии. Коэф-т детерминации.

Основную  информацию для анализа качества регрессионного уравнения можно  получить из ряда остатков. Иногда только по одному графику остатков можно  судить о качестве аппроксимации. Остатки  модели должны обладать опр. свойствами: несмещенность, состоятельность, эффективность. На практике проверка этих свойств сводится к проверке 5 предпосылок МНК: 1.случайный характер остатков (критерий поворотных точек), 2.независимость уровней в ряде остатков (d-критерий Дарбина-Уотсона), 3.соответствие ряда остатков нормальному закону распределения(RS-критерий), 4.равенство 0 мат. ожидания остатков, 5.гомоскедастичность остатков.

1.Свойство случайности проверяется с помощью критерия поворотных точек или критерия пиков. Уровень в ряде остатков называется поворотной точкой, если он одновременно больше или одновременно меньше 2-ух соседних с ним уровней. Точкам поворота приписывают значения 1, остальным – 0. Свойство случайности выполняется, если количество поворотных точек справа означает, что от выражения внутри них нужно взять целую часть. n – количество уровней в ряде.

2.Для проверки свойства независимости (отсутствие автокорреляции) уровней в ряде остатков используют d-критерий Дарбина-Уотсона. В начале рассчитывают величину d по формуле: . Для этого критерия задаются 2 таблич. границы d1 и d2.

3.Для проверки соответствия ряда остатков нормальному закону распределения используют RS-критерий: RS =(Emax-Emin)/SE. Emax и Emin- соотв. наибольшее и наименьшее значения уровней в ряде остатков. SE- СКО. Если значение RS попадает в табличный интервал, то ряд остатков распределен по норм. закону.

5.Гомоскедастичность – постоянство дисперсии остатков по отношению к фактическим значениям фактора или показателя. Остатки называются гомоскедастичными, если они сосредоточены в виде горизонтальной полосы около оси xi, в противном случае остатки называют гетероскедастичными. Для исследования гомоскедастичности применяются различные тесты. Один из них называется тест Голдфельда-Квандта: 1) Упорядочение значений показателя у по степени возрастания фактора х. 2) Из упорядоченной совокупности убирают несколько «с» центральных значений: , р – число оцениваемых в модели параметров. В результате, получается 2 совокупности данных, в одной из них значения фактора будет наименьшими, а в другой – наибольшими. 3) Для каждой совокупности строят модель регрессии, по которой находят остатки: . Пусть S1 – большая сумма квадратов ошибок, а S2 – меньшая. 4) Определим отношение . 5) Полученное значение R сравнивают с табличным значением F-критерия Фишера. Если Fтабл<R, то предпосылка о гомоскедастичности нарушена. Чем больше R по отношению к Fтабл, тем более нарушена данная предпосылка. .

Коэф-т  детерминации: . Показывает, какая доля случайных колебаний показателя у учтено в модели и обусловлена случайными колебаниями фактора. и модель тем лучше, чем . Коэф-т детерминации явл-ся универсальным, т.к. позволяет оценить точность модели, качество в целом, удачность выбора фактора и подходит для случая линейной и нелинейной зависимости переменных.

21. Предпосылки МНК.

Основную  информацию для анализа качества регрессионного уравнения можно получить из ряда остатков. Иногда только по одному графику остатков можно судить о качестве аппроксимации. Остатки модели должны обладать опр. свойствами: несмещенность, состоятельность, эффективность. На практике проверка этих свойств сводится к проверке 5 предпосылок МНК: 1.случайный характер остатков (критерий поворотных точек), 2.независимость уровней в ряде остатков (d-критерий Дарбина-Уотсона), 3.соответствие ряда остатков нормальному закону распределения(RS-критерий), 4.равенство 0 мат. ожидания остатков, 5.гомоскедастичность остатков.

1.Свойство случайности проверяется с помощью критерия поворотных точек или критерия пиков. Уровень в ряде остатков называется поворотной точкой, если он одновременно больше или одновременно меньше 2-ух соседних с ним уровней. Точкам поворота приписывают значения 1, остальным – 0. Свойство случайности выполняется, если количество поворотных точек справа означает, что от выражения внутри них нужно взять целую часть. n – количество уровней в ряде.

2.Для проверки свойства независимости (отсутствие автокорреляции) уровней в ряде остатков используют d-критерий Дарбина-Уотсона. В начале рассчитывают величину d по формуле: . Для этого критерия задаются 2 таблич. границы d1 и d2.

3.Для проверки соответствия ряда остатков нормальному закону распределения используют RS-критерий: RS =(Emax-Emin)/SE. Emax и Emin- соотв. наибольшее и наименьшее значения уровней в ряде остатков. SE- СКО. Если значение RS попадает в табличный интервал, то ряд остатков распределен по норм. закону.

5.Гомоскедастичность – постоянство дисперсии остатков по отношению к фактическим значениям фактора или показателя. Остатки называются гомоскедастичными, если они сосредоточены в виде горизонтальной полосы около оси xi, в противном случае остатки называют гетероскедастичными. Для исследования гомоскедастичности применяются различные тесты. Один из них называется тест Голдфельда-Квандта: 1) Упорядочение значений показателя у по степени возрастания фактора х. 2) Из упорядоченной совокупности убирают несколько «с» центральных значений: , р – число оцениваемых в модели параметров. В результате, получается 2 совокупности данных, в одной из них значения фактора будет наименьшими, а в другой – наибольшими. 3) Для каждой совокупности строят модель регрессии, по которой находят остатки: . Пусть S1 – большая сумма квадратов ошибок, а S2 – меньшая. 4) Определим отношение . 5) Полученное значение R сравнивают с табличным значением F-критерия Фишера. Если Fтабл<R, то предпосылка о гомоскедастичности нарушена. Чем больше R по отношению к Fтабл, тем более нарушена данная предпосылка. .

22. Отбор факторов при построении множественной регрессии. Мультиколлинеарность.

При построении системы факторов необходимо соблюдать следующие условия: 1) должны быть количественно измеримы; 2) теоретически обоснованы; 3) линейно независимы друг от друга; 4) одна модель не должна включать в себя совокупный фактор и факторы его образующие; 5) тесно связаны между собой. Для реализации 5-го требования строят матрицу коэф-в парной корреляции. На основании этой матрицы выбирают те факторы, связь которых с величиной наиболее тесная. Затем проверяют наличие мультиколлинеарности (МК) факторов. Два фактора МК, если . МК факторы нельзя включать в одну модель, нужно выбрать один из них или заменить оба совокупной функцией.

Информация о работе Шпаргалки по "Экономики"