Автор работы: Пользователь скрыл имя, 25 Декабря 2011 в 16:54, контрольная работа
Традиционно к факторам производства относят капитал, труд, землю и предпринимательство.
Для организации производственного процесса необходимые факторы производства должны присутствовать в определенном количестве. Зависимость максимального объема производимого продукта от затрат используемых факторов называется производственной функцией.
Цель этой работы состоит в изучении производственных функций, их применения и использования.
Введение
1. Понятие производственной функции
2. Свойства и основные характеристики производственных функций
Заключение
Литература
Эта ПФ – простейший пример динамической ПФ; она включает нейтральный, то есть нематериализованный в одном из факторов технический прогресс. В более сложных случаях технический прогресс может воздействовать непосредственно на производительность труда или капиталоотдачу: Y(t)=f(A(t)×L(t),K(t)) или Y(t)=f(A(t)×K(t), L(t)). Он называется, соответственно, трудосберегающим или капиталосберегающим НТП. Коэффициент А в производственной функции НТП получил название «нейтрального по Хиксу, Солоу и Харроду3.
Приведем вариант ПФКД с учетом НТП
Расчет численных значений параметров такой функции проводится с помощью корреляционного и регрессионного анализа.
Выбор
аналитической формы ПФ
диктуется прежде всего теоретическими
соображениями, которые должны учитывать
особенности взаимосвязей между конкретными
ресурсами или экономических закономерностей.
Оценка параметров ПФ обычно проводится
методом наименьших квадратов.
Для
производства конкретного продукта
требуется сочетание
Для определенности ограничимся производственными функциями двух переменных . Такая производственная функция определена в неотрицательном ортанте двумерной плоскости, то есть при . ПФ удовлетворяет следующему ряду свойств:
Подобно
линии уровня целевой функции
оптимизационной задачи, для ПФ также
имеет место аналогичное
Рис. 2.
Из рисунка 2 видно, что вдоль изокванты выпуск продукции постоянный, то есть прирост выпуска отсутствует. Математически это означает, что полный дифференциал ПФ на изокванте равен нулю:
Изокванты обладают следующими свойствами:
Изокванты являются подобием кривых безразличия с той лишь разницей, что они отражают ситуацию не в сфере потребления, а в сфере производства.
Отрицательный наклон изоквант объясняется тем, что увеличение использования одного фактора при определенном объеме выпуска продукта всегда будет сопровождаться уменьшением количества другого фактора. Крутизна наклона изокванты характеризуется предельной нормой технологического замещения факторов производства (MRTS). Рассмотрим эту величину на примере двухфакторной производственной функции Q(y,x). Предельная норма технологического замещения измеряется соотношением изменения фактора y к изменению фактора х. Поскольку замена факторов происходит в обратном отношении, то математическое выражение показателя MRTS берется со знаком минус:
На рисунке 3 изображена одна из изоквант ПФ Q(y,x).
Рис. 3.
Если взять какую-либо точку на этой изокванте, например, точку А и провести к ней касательную КМ, то тангенс угла даст нам значение MRTS:
Можно отметить, что в верхней части изокванты угол будет достаточно велик, что говорит о том, что для изменения фактора х на единицу требуются значительные изменения фактора y. Следовательно, в этой части кривой значение MRTS будет велико. По мере движения вниз по изокванте значение предельной нормы технологического замещения будет постепенно убывать. Это означает, что для увеличения фактора х на единицу потребуется незначительное уменьшение фактора y. При полной заменяемости факторов изокванты из кривых преобразуются в прямые (рис.4).
Рис. 4.
Характеристики производственных функций.
Рассмотрим их на примере ПФ вида .
Как уже было отмечено выше, отношение (i=1,2) называется средней производительностью i-го ресурса или средним выпуском по i-му ресурсу. Первая частная производная ПФ (i=1,2) называется предельной производительностью i-го ресурса или предельным выпуском по i-му ресурсу. Эту предельную величину иногда интерпретируют, используя близкое к ней отношение малых конечных величин . Приближенно она показывает, на сколько единиц увеличится объем выпуска y, если объем затрат i-го ресурса возрастет на одну (достаточно малую) единицу при неизменных объемах другого затрачиваемого ресурса.
Например,
в ПФКД для средних
Определим для этой функции предельные производительности факторов:
и
Таким образом, если , то (i=1,2), то есть предельная производительность i-го ресурса не больше средней производительности этого ресурса. Отношение предельной производительности i-го фактора к его средней производительности называется эластичностью выпуска по i-му фактору производства
или приближенно
Таким образом, эластичность выпуска (объема производства) по некоторому фактору (коэффициент эластичности) приближенно определяется как отношение темпов прироста у к темпам прироста этого фактора, то есть показывает на сколько процентов увеличится выпуск у, если затраты i-го ресурса увеличатся на один процент при неизменных объемах другого ресурса.
Сумма
Заключение
Из данной работы можно сделать основные выводы:
Литература