Параметрические методы проверки гипотез

Автор работы: Пользователь скрыл имя, 16 Ноября 2011 в 15:21, курсовая работа

Краткое описание

Задачи индуктивной статистики заключаются в том, чтобы определять, насколько вероятно, что две выборки принадлежат к одной популяции.
Давайте наложим друг на друга, с одной стороны, две кривые — до и после воздействия — для контрольной группы и, с другой стороны, две аналогичные кривые для опытной группы. При этом масштаб кривых должен быть одинаковым.

Содержание работы

Индуктивная статистика
Проверка гипотез
Параметрические методы. Метод Стьюдента (f-тест)
Степени свободы
Метод Стьюдента для зависимых выборок
Контрольная группа. Сравнение результатов для фона и после воздействия
Дисперсионный анализ (тест F Снедекора)
Непараметрические методы. Метод χ2 («хи-квадрат»)
Теоретические частоты (Т)
Критерий знаков (биномиальный критерий)
Опытная группа
Другие непараметрические критерии
Литература

Содержимое работы - 1 файл

Параметрические методы проверки гипотез.doc

— 189.00 Кб (Скачать файл)

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

   ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

   ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ 

   МОСКОВСКИЙ  ГОСУДАРСТВЕННЫЙ  ИНСТИТУТ РАДИОТЕХНИКИ ЭЛЕКТРОНИКИ И  АВТОМАТИКИ (ТЕХНИЧЕСКИЙ  УНИВЕРСИТЕТ) 
 
 
 
 
 

   КУРСОВАЯ  РАБОТА 

   по  дисциплине: 

   Надёжность  и испытание ИРЭ 

   на  тему: 

   «Параметрические методы проверки гипотез» 
 
 
 
 
 
 
 
 

         Выполнил  студент гр. ЭС-11-07

         Витебский А. 
 

         Преподаватель

         Гродзенский С. Я.  
 
 
 
 
 
 
 
 

   Москва, 2011 

Содержание 

  1. Индуктивная статистика
  2. Проверка гипотез
  3. Параметрические методы. Метод Стьюдента (f-тест)
  4. Степени свободы
  5. Метод Стьюдента для зависимых выборок
  6. Контрольная группа. Сравнение результатов для фона и после воздействия
  7. Дисперсионный анализ (тест F Снедекора)
  8. Непараметрические методы. Метод χ2 («хи-квадрат»)
  9. Теоретические частоты (Т)
  10. Критерий знаков (биномиальный критерий)
  11. Опытная группа
  12. Другие непараметрические критерии
  13. Литература
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  1. Индуктивная статистика
 

    Задачи  индуктивной статистики заключаются  в том, чтобы определять, насколько  вероятно, что две выборки принадлежат к одной популяции.

    Давайте наложим друг на друга, с одной  стороны, две кривые — до и после  воздействия — для контрольной  группы и, с другой стороны, две аналогичные  кривые для опытной группы. При  этом масштаб кривых должен быть одинаковым.

    Видно, что в контрольной группе разница  между средними обоих распределений  невелика, и поэтому можно думать, что обе выборки принадлежат  к одной и той же популяции. Напротив, в опытной группе большая  разность между средними позволяет  предположить, что распределения для фона и воздействия относятся к двум различным популяциям, разница между которыми обусловлена тем, что на одну из них повлияла независимая переменная.

  1. Проверка гипотез
 

    Как уже говорилось, задача индуктивной  статистики — определять, достаточно ли велика разность между средними двух распределений для того, чтобы можно было объяснить ее действием независимой переменной, а не случайностью, связанной с малым объемом выборки (как, по-видимому, обстоит дело в случае с опытной группой нашего эксперимента). 

    При этом возможны две гипотезы: 

    1) нулевая гипотеза (Н0), согласно которой  разница между распределениями  недостоверна; предполагается, что  различие недостаточно значительно,  и поэтому распределения относятся  к одной и той же популяции, а независимая переменная не оказывает никакого влияния; 

    2) альтернативная гипотеза (Hx), какой  является рабочая гипотеза нашего  исследования. В соответствии с  этой гипотезой различия между  обоими распределениями достаточно  значимы и обусловлены влиянием  независимой переменной. 

    Основной  принцип метода проверки гипотез  состоит в том, что выдвигается  нулевая гипотеза Н0, с тем чтобы  попытаться опровергнуть ее и тем  самым подтвердить альтернативную гипотезу H1. Действительно, если результаты статистического теста, используемого для анализа разницы между средними, окажутся таковы, что позволят отбросить Н0, это будет означать, что верна Н1 т.е. выдвинутая рабочая гипотеза подтверждается. 

    В гуманитарных науках принято считать, что нулевую гипотезу можно отвергнуть в пользу альтернативной гипотезы, если по результатам статистического теста вероятность случайного возникновения найденного различия не превышает 5 из 100. Если же этот уровень достоверности не достигается, считают, что разница вполне может быть случайной и поэтому нельзя отбросить нулевую гипотезу. 

    Для того чтобы судить о том, какова вероятность  ошибиться, принимая или отвергая нулевую  гипотезу, применяют статистические методы, соответствующие особенностям выборки. 

    Так, для количественных данных при распределениях, близких к нормальным, используют параметрические методы, основанные на таких показателях, как средняя и стандартное отклонение. В частности, для определения достоверности разницы средних для двух выборок применяют метод Стьюдента, а для того чтобы судить о различиях между тремя или большим числом выборок, — тест F, или дисперсионный анализ. 

    Если  же мы имеем дело с неколичественными  данными или выборки слишком  малы для уверенности в том, что  популяции, из которых они взяты, подчиняются нормальному распределению, тогда используют непараметрические методы — критерий χ2 (хи-квадрат) для качественных данных и критерии знаков, рангов, Манна-Уитни, Вилкоксона и др. для порядковых данных. 

    Кроме того, выбор статистического метода зависит от того, являются ли те выборки, средние которых сравниваются, независимыми (т. е., например, взятыми из двух разных групп испытуемых) или зависимыми (т. е. отражающими результаты одной и той же группы испытуемых до и после воздействия или после двух различных воздействий).

 Уровни  достоверности (значимости) 

    Тот или иной вывод с некоторой  вероятностью может оказаться ошибочным, причем эта вероятность тем меньше, чем больше имеется данных для  обоснования этого вывода. Таким  образом, чем больше получено результатов, тем в большей степени по различиям между двумя выборками можно судить о том, что действительно имеет место в той популяции, из которой взяты эти выборки. 

    Однако  обычно используемые выборки относительно невелики, и в этих случаях вероятность  ошибки может быть значительной. В гуманитарных науках принято считать, что разница между двумя выборками отражает действительную разницу между соответствующими популяциями лишь в том случае, если вероятность ошибки для этого утверждения не превышает 5%, т.е. имеется лишь 5 шансов из 100 ошибиться, выдвигая такое утверждение. Это так называемый уровень достоверности (уровень надежности, доверительный уровень) различия. Если этот уровень не превышен, то можно считать вероятным, что выявленная нами разница действительно отражает положение дел в популяции (отсюда еще одно название этого критерия — порог вероятности). 

    Для каждого статистического метода этот уровень можно узнать из таблиц распределения критических значений соответствующих критериев (t, χ2 и  т.д.); в этих таблицах приведены цифры для уровней 5% (0,05), 1% (0,01) или еще более высоких. Если значение критерия для данного числа степеней свободы оказывается ниже критического уровня, соответствующего порогу вероятности 5%, то нулевая гипотеза не может считаться опровергнутой, и это означает, что выявленная разница недостоверна. 

  1. Параметрические методы. Метод Стьюдента (f-тест)
 

    Это параметрический метод, используемый для проверки гипотез о достоверности  разницы средних при анализе  количественных данных о популяциях с нормальным распределением и с одинаковой вариансой. К сожалению, метод Стьюдента слишком часто используют для малых выборок, не убедившись предварительно в том, что данные в соответствующих популяциях подчиняются закону нормального распределения (например, результаты выполнения слишком легкого задания, с которым справились все испытуемые, или же, наоборот, слишком трудного задания не дают нормального распределения). 

    Метод Стьюдента различен для независимых  и зависимых выборок. Независимые  выборки получаются при исследовании двух различных групп испытуемых (в нашем эксперименте это контрольная и опытная группы). В случае независимых выборок для анализа разницы средних применяют формулу

    где М1 —   средняя первой выборки; М2 — средняя второй выборки; s1 —  стандартное отклонение для первой выборки; s2  — стандартное отклонение для второй выборки; nl и n2 — число элементов в первой и второй выборках. 

    Теперь  осталось лишь найти в таблице  значений t величину, соответствующую n-2 степеням свободы, где n — общее число испытуемых в обеих выборках, и сравнить эту величину с результатом расчета по формуле. 

    Если  наш результат больше, чем значение для уровня достоверности 0,05 (вероятность 5%), найденное в таблице, то можно  отбросить нулевую гипотезу (Н0) и  принять альтернативную гипотезу (Н1) т.е. считать разницу средних достоверной. 

    Если  же, напротив, полученный при вычислении результат меньше, чем табличный (для n-2 степеней свободы), то нулевую  гипотезу нельзя отбросить и, следовательно, разница средних недостоверна. 

    В нашем эксперименте с помощью  метода Стьюдента для независимых  выборок можно было бы, например, проверить, существует ли достоверная  разница между фоновыми уровнями (значениями, полученными до воздействия  независимой переменной) для двух групп. При этом мы получим:

 

    Сверившись  с таблицей значений t, мы можем прийти к следующим выводам: полученное нами значение t=0,53 меньше того, которое  соответствует уровню достоверности 0,05 для 26 степеней свободы (h)= 28); следовательно, уровень вероятности для такого t будет выше 0,05 и нулевую гипотезу нельзя отбросить; таким образом, разница между двумя выборками недостоверна, т. е. они вполне могут принадлежать к одной популяции. 

    Сокращенно  этот вывод записывается следующим  образом: 

    t=0,53; h=28;  р>0,05;  недостоверно.  

    Как уже говорилось, поскольку объем  выборок в данном случае невелик, а результаты опытной группы после  воздействия не соответствуют нормальному  распределению, лучше использовать непараметрический метод, например U-тест Манна-Уитни. 

    Однако  наиболее полезным t-тест окажется для нас при проверке гипотезы о достоверности разницы средней между результатами опытной и контрольной групп после воздействия. Попробуйте сами найти для этих выборок значения и сделать соответствующие выводы. 
 

  1. Степени свободы
 

      Для того чтобы свести к  минимуму ошибки, в таблицах критических  значений статистических критериев  в общем количестве данных  не учитывают те, которые можно  вывести методом дедукции. Оставшиеся  данные составляют так называемое  число степеней свободы, т. е. то число данных из выборки, значения которых могут быть случайными. 

    Так, если сумма трех данных равна 8, то первые два из них могут принимать  любые значения, но если они определены, то третье значение становится автоматически  известным. Если, например, значение первого данного равно 3, а второго -1, то третье может быть равным только 4. Таким образом, в такой выборке имеются только две степени свободы. В общем случае для выборки в n данных существует п-1 степень свободы. 

    Если  у нас имеются две независимые выборки, то число степеней свободы для первой из них составляет n1-1, а для второй — n2-1.  А поскольку при определении достоверности разницы между ними опираются на анализ каждой выборки, число степеней свободы, по которому нужно будет находить критерий t в таблице, будет составлять (n1+n2)-2. 

Информация о работе Параметрические методы проверки гипотез