Автор работы: Пользователь скрыл имя, 07 Ноября 2011 в 13:48, дипломная работа
Актуальность темы дипломной работы связана с нестабильным состоянием междуна¬родных финансовых рынков, неполнотой исследований в данной области, открывающимися возможностями для использования методов оценки инвестиционных рисков в российской эконо¬мике.
В частности, актуальность финансового управления рисками на международных рынках свя¬зана с тем, что риски увеличиваются, произошла их глобализация, сократились ценовые спрэды при том, что увеличилась волатильность валют, процентных ставок, курсов ценных бумаг и цен на сырьевые товары. В целом, финансовые рынки стали более нестабильными, сложными и рискованными.
Целью дипломной работы являются обобщение и анализ моделей оценки инвестиционных рисков, изучение теоретической концепции и методологии управления рисков для использования в банковской практике.
Введение
1. Инвестиционные риски
1.1. Понятие инвестиционных рисков
1.2. Классификация инвестиционных рисков
2. Оценка инвестиционных рисков
2.1. Классические модели оценки риска
2.2. VаR – модели оценки инвестиционных рисков
3. Разработка и реализация мер по управлению инвестиционными рисками.
3.1. Управление инвестиционными рисками в коммерческом банке
3.2. Хеджирование как метод страхования рисков
Заключение
Cписок литературы
Однако на реальном российском финансовом рынке (впрочем, как и на многих зарубежных и международных рынках) предположение (гипотеза) о нормальности распределения, как правило, не выполняется.
После задания функций распределения рыночных факторов необходимо выбрать доверительный уровень, то есть вероятность, с которой наши потери не должны превышать VaR. Затем надо определить период поддержания позиций (holding period), на котором оцениваются потери. При некоторых упрощающих предположениях легко показать, что значение VaR портфеля пропорционально квадратному корню из периода поддержания позиций. Поэтому при принятии этих предположений или их достоверности достаточно вычислять только однодневную величину VaR. Тогда, например, четырехдневное значение VaR будет в два раза больше, а 25-дневное - в пять раз.
Кроме того, если в портфеле содержатся сложные производные финансовые инструменты (например, опционы), надо выбрать функцию их ценообразования в зависимости от параметров рынка. Наконец, необходимо определить корреляционные связи между различными рыночными факторами и составить матрицу ковариаций. Последнее представляется весьма важным.
Следует, однако, помнить, что любая числовая мера степени неопределенности является ограниченной - лишь само реальное распределение дает исчерпывающую характеристику риска. Поэтому в качестве такой меры риска выбор той или иной функции и числовых характеристик распределения должен производиться с учетом особенностей конкретной задачи управления рисками. Так, например, принимая доверительный уровень, скажем, 99%, мы должны подумать о последствиях "остального" 1% -будет ли это не слишком большой проигрыш порядка одного стандартного отклонения, или что-то типа мировых кризисов октября 1987 года (тогда индекс Доу-Джонса упал более чем на 800 пунктов) или 1997 года, "черного вторника" или кризиса августа 1998 года в России. В последних случаях необходимо увеличить доверительный интервал, например, до 99,9%-99,99%.
И, наконец, для расчета VaR необходимо знать стоимостную структуру портфеля (состав и цены финансовых инструментов).
Получение релевантной информации о составе портфеля - непростая задача. Некоторые крупные корпорации, имеющие в своем портфеле тысячи торгуемых на различных рынках инструментов и ведущие активные финансовые операции, сталкиваются с проблемой оперативного получения информации о текущей структуре портфеля.
Другая проблема состоит в выборе времени фиксации цен активов, образующих портфель. Торговые сессии на мировых рынках заканчиваются в разное время, что создает проблему: по каким ценам считать изменение стоимости портфеля? Обычно время фиксации выбирается как время закрытия торгов на рынке, где сосредоточены основные активы компании.
Итак, после того как выявлены все базовые элементы, следует обратиться непосредственно к процедуре вычисления Value-at-Risk.
Существуют три основных метода вычисления VaR: аналитический метод (иначе называемый вариационно-ковариационным методом, или методом ковариационных матриц), метод исторического моделирования (исторический метод, или метод исторических данных) и метод статистического моделирования (метод статистических испытаний или, иначе, метод Монте-Карло).
Основная идея аналитического метода заключается в выявлении рыночных факторов, влияющих на стоимость портфеля, и аппроксимации стоимости портфеля на основе этих факторов. То есть финансовые инструменты, составляющие портфель, разбиваются, насколько это возможно, на элементарные активы, такие, что изменение каждого зависит только от воздействия одного рыночного фактора. Например, многолетняя купонная облигация может рассматриваться как набор бескупонных облигаций с разными сроками погашения.
Портфель раскладывается на базисные активы (компоненты), от которых зависит его текущая (современная) стоимость (Present Value). Среднеквадратичное отклонение стоимости портфеля определяется среднеквадратическими отклонениями каждой из компонент и матрицей ковариаций. Наиболее известное воплощение этой модели - Risk-Metrics J.Р. Morgan.
Этот метод требует только оценки параметров распределения при явном допущении о виде распределения рыночных факторов. Обычно делают предположение о нормальном законе распределения каждого рыночного фактора. На основе данных прошлых периодов (далее исторических данных) вычисляются математические ожидания и дисперсии факторов, а также корреляции между ними. Если аппроксимация имеет линейный вид, то распределение доходности портфеля в целом также будет нормальным, и, зная параметры распределений рыночных факторов, можно определить параметры распределения всего портфеля.
Оценив стандартные отклонения логарифмов изменений цен для каждого из входящих в портфель активов, вычисляем VaR для них путем умножения стандартных отклонений на соответствующий доверительному уровню коэффициент. Полное вычисление VaR портфеля требует знания корреляционных связей между его элементами.
Аналитический метод может быть обобщен на портфель с произвольным числом различных активов - достаточно знать их волатильности и корреляции между ними. Волатильности важны при рассмотрении нелинейных инструментов. Корреляции между различными активами особенно важны при рассмотрении сложных портфелей - именно корреляция определяет характер неттирования прибылей/убытков между различными инструментами.
Серьезное преимущество этого метода состоит в том, что для большинства рыночных факторов все необходимые параметры нормального распределения хорошо известны. Отметим также, что оценка риска в рамках методологии VaR, полученная с помощью аналитического метода, совпадает с оценкой риска, предлагаемой современной портфельной теорией.
Аналитический метод прост в реализации и позволяет относительно быстро (возможно, даже в режиме реального времени) вычислять VaR практически на любых современных компьютерах. Но качество оценки ухудшается при увеличении в портфеле доли инструментов с нелинейными функциями выплат.
Кроме того, необходимость делать допущения о виде распределений для базовых активов является серьезным недостатком этого метода. Аналитический метод обладает также рядом не менее существенных недостатков. В частности, приходится опираться на весьма сомнительные гипотезы о нормальности распределения и стационарности нормального распределения, что делает метод мало пригодным для современных российских (и не только российских) условий. Метод неприменим для портфелей, состоящих из инструментов, стоимость которых зависит от базисных активов нелинейным образом, например, для портфелей, содержащих нелинейные финансовые инструменты типа опционов и так называемых кредитных деривативов (Credit Derivatives).
Резюмируя
все вышесказанное по аналитическому
методу, можно выделить основные положительные
и отрицательные стороны
Следующий метод, который используется при вычислении VaR, - это метод исторического моделирования. Этот метод заключается в исследовании изменений стоимости портфеля за предыдущий исторический период. Исторические изменения стоимости активов используются для оценки изменения текущей стоимости портфеля. Определяются максимально возможные изменения стоимости портфеля для выбранного доверительного уровня.
Для вычисления VaR на определенный исторический период составляется база данных значений цен инструментов, входящих в портфель (или выделенных рыночных факторов, если портфель аппроксимируется). После этого надо вычислить изменения цен инструментов за промежуток времени, для которого рассчитывается VaR, и получить соответствующие значения изменений стоимости портфеля. Затем надо проранжировать полученные данные, построить гистограмму распределения изменений стоимости портфеля и найти значение VaR, соответствующее выбранному значению вероятности.
Этот метод является непараметрическим и основан на весьма понятном предположении о неизменности развития и стационарности рынка в ближайшем будущем. Выбирается период времени (например, 100 торговых дней), за который отслеживаются относительные изменения цен всех входящих в сегодняшний портфель активов. Затем для каждого из этих изменений вычисляется, насколько изменилась бы цена сегодняшнего портфеля, после чего полученные 100 чисел сортируются по убыванию. Взятое с обратным знаком число, соответствующее выбранному доверительному уровню (например, для уровня 99% необходимо взять число с номером 99), и будет представлять собой эмпирическую оценку VaR портфеля.
У исторического метода есть безусловные преимущества - он не требует серьезных упрощающих предположений и способен улавливать весьма неординарные события на рынке. Важные преимущества данного метода состоят также в том, что он свободен от предположений о виде распределения рыночных факторов портфеля, прост в осуществлении. При его использовании не возникает проблем с оценкой портфеля, содержащих опционы и подобные им инструменты.
К недостаткам обсуждаемого метода следует отнести то, что он требует проведения большой работы по сбору исторических данных и их обработке. Кроме того, оценка возможных изменений стоимости портфеля ограничена набором предыдущих исторических изменений. Типичная проблема при использовании данного метода состоит в отсутствии требуемого объема исторических данных. Чтобы получить более точную оценку VaR, необходимо использовать как можно больший объем данных, но использование слишком старых данных приводит к тому, что сегодняшний (и тем более будущий) риск будет оценен на основе данных, которые не соответствуют текущему состоянию рынка.
Таким образом, наиболее существенным недостатком исторического метода является его исключительная неустойчивость по отношению к выбору предыстории.
В самом деле, пусть портфель состоит только из одного фьючерса на доллар США. Пусть из доступных нам n дней периода предыстории в течение первых n/2 дней волатильность изменений цен фьючерса была равна 1%, а в течение последующих n/2 дней – в десять раз меньшее, чем при выборе всей доступной предыстории. Какое значение считать верным не понятно. Вопрос остается открытым, а ответ на него потребует дополнительных гипотез о текущем состоянии рынка.
Следующим на очереди является метод статистического моделирования (иначе метод Монте-Карло), который основан на моделировании случайных процессов с заданными характеристиками. Данный метод заключается в моделировании возможных изменений стоимости портфеля при некоторых предположениях. Выявляются основные рыночные факторы, влияющие на стоимость портфеля. Затем строится совместное распределение этих факторов каким-либо способом, например, с использованием исторических данных или данных, основанных на каком-либо сценарии развития экономики. После этого моделируется большое число возможных сценариев развития ситуации, а изменение портфеля считается для каждого результата моделирования. Далее строится гистограмма полученных данных и определяется значение VaR.
Таким образом, изменения стоимости портфеля моделируются на основе выбранных статистических параметров отдельных активов, входящих в состав портфеля.
В отличие от исторического моделирования в методе Монте-Карло изменения цен активов генерируются псевдослучайным образом в соответствии с заданными параметрами. Имитируемое распределение может быть в принципе любым, а число сценариев весьма большим (от нескольких десятков до сотен тысяч). В остальном этот метод почти аналогичен методу исторического моделирования.
Метод Монте-Карло является наиболее точным и надежным при рассмотрении нелинейных инструментов. Этот метод имеет еще несколько важных преимуществ. Он не использует конкретную модель определения параметров и может быть легко перенастроен в соответствии с экономическим прогнозом. Метод моделирует не конечную стоимость портфеля, а целые сценарии развития ситуаций, что позволяет отслеживать изменение стоимости портфеля в зависимости от пути развития ситуации.
Недостатки метода Монте-Карло – его медленная сходимость (это приводит к существенным затратам времени и вычислительных мощностей), сложность и трудоемкость расчетов.