Метрология, стандартизация и сертификация

Автор работы: Пользователь скрыл имя, 04 Апреля 2012 в 10:58, реферат

Краткое описание

Метрология — наука об измерениях физических величин, методах и средствах обеспечения их единства и способах достижения требуемой точности. Предметом метрологии является извлечение количественной информации о свойствах объектов с заданной точностью и достоверностью. Средством метрологии является совокупность измерений и метрологических стандартов, обеспечивающих требуемую точность.

Содержимое работы - 1 файл

Метрология.doc

— 765.00 Кб (Скачать файл)

Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в СИ присвоены собственные названия, например радиану.

Приставки можно использовать перед названиями единиц; они означают, что единицу нужно умножить или разделить на определённое целое число, степень числа 10. Например, приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.

Международные и русские обозначения

В России действует ГОСТ 8.417—2002, предписывающий обязательное использование единиц СИ. В нём перечислены единицы физических величин, разрешённые к применению, приведены их международные и русские обозначения и установлены правила их использования.

По этим правилам, при договорно-правовых отношениях в области сотрудничества с зарубежными странами, а также в поставляемых за границу вместе с экспортной продукцией технических и других документах разрешается применять только международные обозначения единиц. Применение международных обозначений обязательно также на шкалах и табличках измерительных приборов. В остальных случаях, например, во внутренних документах и обычных публикациях можно использовать либо международные, либо русские обозначения. Не допускается одновременно применять международные и русские обозначения, за исключением публикаций по единицам величин.

СИ является развитием метрической системы мер, которая была создана французскими учёными и впервые широко внедрена после Великой Французской революции. До введения метрической системы единицы выбирались случайно и независимо друг от друга. Поэтому пересчёт из одной единицы в другую был сложным. К тому же в разных местах применялись разные единицы, иногда с одинаковыми названиями. Метрическая система должна была стать удобной и единой системой мер и весов.

В 1799 г. во Франции были изготовлены два эталона — для единицы длины (метр) и для единицы массы (килограмм)[2].

В 1874 г. была представлена система СГС, основанная на трёх единицах — сантиметр, грамм и секунда — и десятичных приставках от микро до мега[2].

В 1875 г. была подписана Метрическая конвенция. Были начаты работы по разработке международных эталонов метра и килограмма.

В 1889 г. 1-я Генеральная конференция по мерам и весам приняла систему мер, сходную с СГС, но основанную на метре, килограмме и секунде, так как эти единицы были признаны более удобными для практического использования[2].

В последующем были введены базовые единицы для физических величин в области электричества и оптики.

В 1960 XI Генеральная конференция по мерам и весам приняла стандарт, который впервые получил название «Международная система единиц (СИ)».

В 1971 XIV Генеральная конференция по мерам и весам внесла изменения в СИ, добавив, в частности, единицу количества вещества (моль).

Единицы СИ

Названия единиц СИ пишутся со строчной буквы, после обозначений единиц СИ точка не ставится, в отличие от обычных сокращений.

Основные единицы

Величина

Единица измерения

Обозначение

русское название

международное название

русское

международное

Длина

метр

metre (meter)

м

m

Масса

килограмм

kilogram

кг

kg

Время

секунда

second

с

s

Сила тока

ампер

ampere

А

A

Термодинамическая температура

кельвин

kelvin

К

K

Сила света

кандела

candela

кд

cd

Количество вещества

моль

mole

моль

mol

Производные единицы

Производные единицы могут быть выражены через основные с помощью математических операций: умножения и деления. Некоторым из производных единиц, для удобства, присвоены собственные названия, такие единицы тоже можно использовать в математических выражениях для образования других производных единиц.

Математическое выражение для производной единицы измерения вытекает из физического закона, с помощью которого эта единица измерения определяется или определения физической величины, для которой она вводится. Например, скорость — это расстояние, которое тело проходит в единицу времени; соответственно, единица измерения скорости — м/с (метр в секунду).

Часто одна и та же единица может быть записана по-разному, с помощью разного набора основных и производных единиц (см., например, последнюю колонку в таблице Производные единицы с собственными названиями). Однако на практике используются установленные (или просто общепринятые) выражения, которые наилучшим образом отражают физический смысл величины. Например, для записи значения момента силы следует использовать Н·м, и не следует использовать м·Н или Дж.

Производные единицы с собственными названиями

Величина

Единица измерения

Обозначение

Выражение

русское название

международное название

русское

международное

Плоский угол

радиан

radian

рад

rad

м·м−1 = 1

Телесный угол

стерадиан

steradian

ср

sr

м2·м−2 = 1

Температура по шкале Цельсия¹

градус Цельсия

degree Celsius

°C

°C

K

Частота

герц

hertz

Гц

Hz

с−1

Сила

ньютон

newton

Н

N

кг·м·c−2

Энергия

джоуль

joule

Дж

J

Н·м = кг·м2·c−2

Мощность

ватт

watt

Вт

W

Дж/с = кг·м2·c−3

Давление

паскаль

pascal

Па

Pa

Н/м2 = кг·м−1·с−2

Световой поток

люмен

lumen

лм

lm

кд·ср

Освещённость

люкс

lux

лк

lx

лм/м² = кд·ср/м²

Электрический заряд

кулон

coulomb

Кл

C

А·с

Разность потенциалов

вольт

volt

В

V

Дж/Кл = кг·м2·с−3·А−1

Сопротивление

ом

ohm

Ом

Ω

В/А = кг·м2·с−3·А−2

Электроёмкость

фарад

farad

Ф

F

Кл/В = с4·А2·кг−1·м−2

Магнитный поток

вебер

weber

Вб

Wb

кг·м2·с−2·А−1

Магнитная индукция

тесла

tesla

Тл

T

Вб/м2 = кг·с−2·А−1

Индуктивность

генри

henry

Гн

H

кг·м2·с−2·А−2

Электрическая проводимость

сименс

siemens

См

S

Ом−1 = с3·А2·кг−1·м−2

Активность (радиоактивного источника)

беккерель

becquerel

Бк

Bq

с−1

Поглощённая доза ионизирующего излучения

грэй

gray

Гр

Gy

Дж/кг = м²/c²

Эффективная доза ионизирующего излучения

зиверт

sievert

Зв

Sv

Дж/кг = м²/c²

Активность катализатора

катал

katal

кат

kat

моль/с

• Шкалы Кельвина и Цельсия связаны между собой следующим образом: °C = K − 273,15

Единицы, не входящие в СИ

Некоторые единицы, не входящие в СИ, по решению Генеральной конференции по мерам и весам «допускаются для использования совместно с СИ».

Единица измерения

Международное название

Обозначение

Величина в единицах СИ

русское

международное

минута

minute

мин

min

60 с

час

hour

ч

h

60 мин = 3600 с

сутки

day

сут

d

24 ч = 86 400 с

градус

degree

°

°

(π/180) рад

угловая минута

minute

(1/60)° = (π/10 800)

угловая секунда

second

(1/60)′ = (π/648 000)

литр

litre (liter)

л

l, L

1/1000 м³

тонна

tonne

т

t

1000 кг 

непер

neper

Нп

Np

безразмерна

бел

bel

Б

B

безразмерна

электронвольт

electronvolt

эВ

eV

≈1,60217733×10−19 Дж

атомная единица массы

unified atomic mass unit

а. е. м.

u

≈1,6605402×10−27 кг

астрономическая единица

astronomical unit

а. е.

ua

≈1,49597870691×1011 м

морская миля

nautical mile

миля

- [3]

1852 м (точно)

узел

knot

уз

 

1 морская миля в час = (1852/3600) м/с

ар

are

а

a

10² м²

гектар

hectare

га

ha

104 м² 

бар

bar

бар

bar

105 Па

ангстрем

ångström

Å

Å

10−10 м

барн

barn

б

b

10−28 м²

Кроме того, ГОСТ 8.417-2002 разрешает применение следующих единиц: град, световой год, парсек, диоптрия, киловатт-час, вольт-ампер, вар, ампер-час, карат, текс, гал, оборот в секунду, оборот в минуту. Разрешается применять единицы относительных и логарифмических величин, такие как процент, промилле, миллионная доля, фон, октава, декада. Допускается также применять единицы времени, получившие широкое распространение, например, неделя, месяц, год, век, тысячелетие.

Другие единицы применять не разрешается.

Тем не менее, в различных областях иногда используются и другие единицы.

        Единицы системы СГС: эрг, гаусс, эрстед и др.

        Внесистемные единицы, широко распространённые до принятия СИ: кюри, калория, ферми, микрон и др.

Некоторые страны не приняли систему СИ, или приняли её лишь частично и продолжают использовать английскую систему мер или сходные единицы.

1.4.       Виды измерений

 

Измерения различают по способу получения и характеру результата, условиям, методам, степени достаточности, связи с объектом, числу и точности оценки погрешности (см. рис. 1.1).

По способу получения результата измерения делятся на прямые, косвенные, совокупные, совместные и динамические.

Прямые измерения — это непосредственное сравнение физической величины с ее единицей. Например, при определении длины предмета с помощью линейки происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т. е. единицей измерения.

Различают шесть методов прямых измерений:

• метод непосредственной оценки, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора, например, давление — пружинным манометром, массу — на весах, электрический ток — амперметром;

• метод сравнения с мерой, где измеряемую величину сравнивают с величиной, воспроизводимой мерой, например, измерение массы с помощью рычажных весов уравновешиванием гирей; измерение напряжения постоянного тока компенсатором, сравнивая с ЭДС параллельного элемента;

• метод дополнения, где значение измеряемой величины дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению;  

• дифференциальный метод характеризуется измерением разности между измеряемой величиной и известной величиной, воспроизводимой мерой. Данный метод позволяет получать результат высокой точности даже при использовании относительно примитивных средств;

• нулевой метод аналогичен дифференциальному, но разность между измеряемой величиной и мерой сводится к нулю;

• метод замещения — метод сравнения с мерой, в которой измеряемую величину замещают известной величиной, воспроизводимой мерой, например, взвешивание с поочередным размещением измеряемого объекта и гирь на одну и ту же чашу весов.

Информация о работе Метрология, стандартизация и сертификация