Автор работы: Пользователь скрыл имя, 25 Ноября 2012 в 19:06, курсовая работа
В этой работе сделана попытка проанализировать физические основы и технологию ручной дуговой сварки, систематизировать рассредоточенные по различным источникам данные о схемах и принципах организации производства работ при использовании этого метода, сравнить теоретический материал с практическим, полученным за время работы на строительстве (производственной практики) трех различных трубопроводоводных систем, а также постараться дать рекомендации по возможному усовершенствованию технологии, выводы о целесообразности и перспективах дальнейшего применения ручной дуговой сварки при сооружении объектов магистрального транспорта нефти и газа.
Оглавление 4
Введение 7
1.Элементы теории сварочных процессов 11
1.1 Сварка как способ получения монолитных соединений 11
1.1.1 Понятие сварки 11
1.1.2 Механизм образования монолитного соединения 11
1.1.3 Образование монолитного соединения при сварке плавлением 13
1.1.4 Образование монолитного соединения при сварке давлением 14
1.2 Классификация сварочных процессов 16
1.2.1 Признаки классификации 16
1.2.2 Классификация сварочных процессов по физическим признакам 17
1.2.3 Классификация методов сварки магистральных трубопроводов 18
1.2.3.1 Сущность метода ручной дуговой сварки 19
1.2.3.2 Автоматическая дуговая сварка под слоем флюса 20
1.2.3.3 Автоматическая дуговая сварка в среде защитных газов 21
1.2.3.4 Автоматическая сварка неповоротных стыков порошковой проволокой с принудительным формированием шва 22
1.2.3.5 Электроконтактная сварка оплавлением 23
1.3 Физическо-металлургические явления при дуговой сварке плавящимся электродом 24
1.3.1 Физика сварочной дуги 24
1.3.1.1 Природа, строение и область существования сварочной дуги 24
1.3.1.2 Строение сварочной дуги и ее вольтамперная характеристика 25
1.3.1.3 Элементарные процессы в плазме дуги. Ионизация и деионизационные процессы в дуге 27
1.3.1.4 Термодинамическая характеристика плазмы. Понятие эффективного потенциала ионизации 30
1.3.1.5 Явления переноса, баланс энергии и температура в столбе дуги 31
1.3.1.6 Приэлектродные области дугового разряда 33
1.3.1.6.1 Эмиссионные процессы в катодной зоне. Виды электронной эмиссии 33
1.3.1.6.2 Физические явления в приэлектродных областях 34
1.3.1.6.3 Краткая характеристика приэлектродных зон 35
1.3.1.7 Элементы магнитогидродинамики сварочной дуги 37
1.3.1.7.1 Электромагнитные силы в дуге 37
1.3.1.7.2 Магнитное дутье. Влияние ферромагнитных масс 38
1.3.1.7.3 Влияние на дугу внешнего магнитного поля 39
1.3.1.8 Перенос металла в сварочной дуге 41
1.3.1.9 Краткая характеристика сварочных дуг с плавящимся электродом 43
1.3.2 Металлургические процессы при сварке 44
1.3.2.1 Процессы окисления металла шва 44
1.3.2.2 Раскисление металла сварочной ванны 46
1.3.2.3 Защита металла сварочной ванны от воздействия атмосферы 47
1.3.2.4 Покрытие электродов, его компоненты и их функции 48
1.3.2.5 Металлургические процессы при РДС покрытыми электродами 49
1.3.2.6 Особенности металлургических процессов при сварке электродами с покрытием основного и целлюлозного вида 50
1.3.2.7 Способы легирования металла шва 51
1.3.2.8 Вредные примеси при сварке и их влияние на качество металла шва 52
1.3.3 Термодеформационные процессы и превращения в металлах при сварке 54
1.3.3.1 Термодеформационные процессы при сварке 55
1.3.3.1.1 Понятие о сварочных деформациях и напряжениях 55
1.3.3.1.2 Методы определения остаточных деформаций и напряжений 58
1.3.3.1.3 Типичные поля остаточных напряжений при сварке многослойных швов 59
1.3.3.2 Образование сварных соединений и формирование первичной структуры металла шва 60
1.3.3.2.1 Понятие свариваемости 60
1.3.3.2.2 Общие положения теории кристаллизации 62
1.3.3.2.3 Особенности кристаллизации и формирования первичной структуры металла шва 67
1.3.3.2.4 Химическая неоднородность сварного соединения и ее виды 68
1.3.3.2.5 Характер изменения прочности и пластичности металлов и сплавов в области высоких температур при сварке 71
1.3.3.2.6 Горячие трещины при сварке 73
1.3.3.3 Превращения в металлах при сварке 78
1.3.3.3.1 Характерные зоны сварных соединений 78
1.3.3.3.2 Виды превращений в металле сварных соединений 80
1.3.3.3.2.1.Фазовые превращения. Кинетика диффузионного превращения 80
1.3.3.3.2.2 Кинетика мартенситного превращения 83
1.3.3.3.3 Фазовые и структурные превращения при сварке сталей. Превращения в основном металле при нагреве 84
1.3.3.3.4 Превращения в шве и основном металле при охлаждении 88
1.3.3.3.5 Способы регулирования структуры сварных соединений 92
1.3.3.3.6 Холодные трещины при сварке 93
2 Особенности технологии ручной дуговой сварки неповоротных стыков 97
2.1 Сварочные электроды 97
2.1.1 Классификация сварочных электродов 97
2.1.2 Условное обозначение сварочных электродов 99
2.1.3 Краткая характеристика материалов покрытия и стержня электродов 100
2.2 Сварные соединения и швы 103
2.2.1 Сварные соединения и швы. Виды швов и их геометрические характеристики 103
2.2.2 Конструкция шва. Назначение и технология сварки отдельных его слоев 105
2.3 Этапы разработки технологии РДС 109
2.3.1 Подготовка кромок труб 109
2.3.2 Выбор электродов 110
2.3.3 Сварочный ток 112
2.3.4 Выбор конструкции шва 114
2.3.5 Определение скорости сварки 116
2.4 Подготовительные операции 117
2.4.1 Очистка полости, осмотр, ремонт и зачистка кромок труб 117
2.4.2 Сборка стыка 118
2.4.3 Предварительный подогрев 121
2.5 Схемы и методы производства сварочно-монтажных работ 124
2.6 Особенности технологии сварки трубопроводов из различных видов стали 127
2.6.1 Сварка трубопроводов из сталей повышенной и высокой прочности 127
2.6.2 Сварка термически уплотненных сталей 128
3 Патентные изыскания 130
Заключение 132
Список литературы 136
Приложения 139
3)
при переходе из неустойчивого
искрового разряда путем
4)
при замыкании и последующем
размыкании токонесущих
При сварке плавящимся электродом обычно используют дугу размыкания, а при сварке неплавящимся вольфрамовым электродом — высокочастотный вспомогательный разряд от осциллятора. Импульс высокого напряжения получают обычно с помощью конденсатора. Угольную дугу возбуждают чаще всего, используя третий электрод.
В самостоятельном разряде, начиная
с токов выше нескольких микроампер,
наблюдается неравномерное
Для газового разряда сопротивление не является постоянным (R const), так как число заряженных частиц в нем зависит от интенсивности ионизации и, в частности, от тока. Поэтому электрический ток в газах не подчиняется закону Ома и вольтамперная характеристика разряда для газов является обычно нелинейной.
В зависимости от плотности тока вольтамперная характеристика дуги может становиться падающей, пологой и возрастающей (рис. 7). В I области при малых токах (примерно до 100 А) и свободной дуге с увеличением тока Iд интенсивно возрастает число заряженных частиц главным образом вследствие разогрева и роста эмиссии катода, а следовательно, и соответствующего ей роста объемной ионизации в столбе дуги. Сопротивление столба дуги уменьшается, и падает нужное для поддержания разряда напряжение (Uд); характеристика дуги является падающей.
Во II области при дальнейшем росте тока и ограниченном сечении электродов столб дуги несколько сжимается, и объем газа, участвующего в переносе зарядов, уменьшается. Это приводит к меньшей скорости роста числа заряженных частиц. Напряжение дуги становится мало зависящим от тока, а характеристика – пологой. Первые две области токов охватывают дуги с так называемым отрицательным электрическим сопротивлением. Падающая и пологая характеристики типичны для дуги при ручной дуговой (ДР) и газоэлектрической (ГЭ) сварке, а также вообще для сварки при малых плотностях тока, в том числе и дугой под флюсом (ДФ).
Сварка на высоких плотностях тока и плазменно-дуговые процессы соответствуют III области режимов дуги. Они характеризуются сильным сжатием столба дуги, а вольтамперная кривая здесь — возрастающая, что указывает на увеличение энергии, расходуемой внутри дуги.
В сильноточных сжатых дугах ионизация газа в столбе может достигать значений, близких к 100%, а термоэмиссионная способность катода исчерпана. В этом случае увеличение тока практически уже не может изменить числа заряженных частиц в дуге. Ее сопротивление становится положительным и почти постоянным: R=const. Высокоионизированная сжатая плазма по своим свойствам близка к металлическому проводнику. Закон Ома вновь становится справедливым в его обычном виде.
После возбуждения разряда ионизация в газе может происходить в основном двумя путями: взаимным соударением частиц и поглощением квантов энергии (фотоионизация).
Одновременно идут процессы деионизации, т. е. образование нейтральных частиц при взаимодействии ионов и электронов.
Электрическое поле дуги напряженностью Е сообщает за 1 с энергию jE электронам и ионам в 1 м3 столба. Электроны в связи с подвижностью воспринимают наибольшую часть этой энергии и в результате соударений передают ее атомам и ионам. Возможны два рода соударений – упругие и неупругие:
Электрон, который близко подходит к атому, отталкивается электронным облаком, но нарушает, в свою очередь, расположение облака. Окончательный результат зависит от скорости электрона (его энергии и направления движения).
1)медленный электрон легко
2)при неупругих соударениях частиц энергия передается в виде энергии диссоциации wд , возбуждения wв или ионизации wi , причем за одно столкновение может быть передано сразу несколько электрон-вольт. При этом электрон нейтрального атома переходит с низкого уровня на более высокий, потенциальная энергия атома растет, и атом возбуждается либо ионизируется. Запасаясь в возбужденных атомах, энергия вновь уходит из них в виде излучения – столб дуги светится.
Ионизацию можно рассматривать как крайний случай возбуждения, когда электрону сообщается энергия большая, чем самый высокий возбужденный уровень атома.
Энергию, которая должна быть сообщена электрону для его ионизации, часто выражают в вольтах (точнее в электрон-вольтах) и называют соответственно потенциалом ионизации Ui. Условия неупругого соударения электрона е при напряжении поля U можно записать так:
eU >> wд (или wв; wi).
Значения первых потенциалов ионизации Ui некоторых атомов приведены в табл. 3:
Таблица 3
Значения первых потенциалов ионизации некоторых атомов
Атом |
Cs |
K |
Na |
Ca |
Fe |
H |
O |
N |
Ar |
F |
Ne |
He |
Ui,эВ |
3,9 |
4,3 |
5,11 |
6,08 |
7,83 |
13,53 |
13,56 |
14,5 |
15,7 |
18,6 |
21,5 |
24,5 |
Неупругие соударения частиц между собой при высоких температуре и плотности газа приводят к так называемой термической ионизации, которая возникает за счет кинетической энергии частиц. Наиболее вероятна схема электронного удара:
eбыстр + A0
После неупругого соударения оба электрона будут обладать малыми скоростями и вновь начнут ускоряться электрическим полем.
Ионизация холодной плазмы осуществляется весьма небольшим числом высокоскоростных электронов, соответствующих «хвосту» максвелловского распределения. Поэтому неупругих столкновений в сварочном столбе дуги обычно значительно меньше, чем упругих.
Энергия ионизации зависит от строения атома, т.е. от его места в периодической системе элементов. Она представляет собой периодическую функцию атомного номера элемента Z и снижается с уменьшением номера группы и увеличением номера периода таблицы Менделеева.
Атомы и молекулы могут возбуждаться не только при соударениях между собой или с ионами и электронами, но и путем поглощения квантов излучения (явление фотоионизации). Такие кванты в дуге появляются при рекомбинации (деионизации, или восстановлении) других сильно возбужденных атомов. Условие фотоионизации:
hν
где h – постоянная Планка. Отсюда можно определить длину волны Λi электромагнитного излучения, способного вызвать ионизацию атомов:
ν =
Чем больше потенциал ионизации элемента, тем меньше требуемая для ионизации атома этого элемента длина волны. Для сварочной дуги соответствующие значения длины волны находятся в ультрафиолетовой части спектра. Фотоионизация в плотной плазме, видимо, незначительна по сравнению термической (ударной), причем выделить их доли расчетным и опытным путем пока не удается.
В любой точке стационарного разряда концентрация заряженных частиц любого типа определяется равенством скоростей образования и потерь частиц в этой точке. Ионизация в плазме приводит к разделению зарядов, но электрическое притяжение ограничивает степень возможного разделения и плазма остается квазинейтральной. Наряду с ионизацией непрерывно происходят уравновешивающие ее процессы деионизации. К ним относятся рекомбинация заряженных частиц в нейтральные, захват электронов (прилипание), дрейф проводимости и диффузионные процессы, выравнивающие концентрацию (амбиполярная диффузия)
Явление рекомбинации электрона с ионом заключается в том, что свободный электрон, пролетая в поле иона, захватывается последним и переходит в связанное состояние. При этом освобождается энергия, равная сумме кинетической энергии свободного электрона и его энергии связи. Так как свободные электроны обладают непрерывным набором энергий, то фотоны, излучаемые в процессе рекомбинации, образуют сплошной спектр, на который накладывается линейчатый спектр возбужденных атомов, образующихся при ступенчатых переходах.
Для сварочных дуг излучение рекомбинации преобладает над тормозным излучением электронов и имеется преимущественно сплошной спектр с максимумом в области видимого и ультрафиолетового диапазонов (0,3–1,0 мкм). Спектр сварочной дуги в парах металлов приближается к спектру солнечного излучения с небольшим сдвигом от последнего в сторону длинных волн (рис. 8).
Для обычных сварочных дуг, горящих в среде при давлении порядка атмосферного, столб дуги представляет собой плазму. В полностью ионизированной плазме нейтральные частицы отсутствуют.
Плазма дуги квазинейтральна (т. е. почти нейтральна), так, как в ней отрицательный заряд электронов почти точно нейтрализует положительный заряд ионов. Однако так как электроны гораздо подвижнее, чем положительные ионы, то поле заставляет электроны быстро уходить к аноду и столб дуги имеет положительный потенциал относительно катода.
Термическое равновесие в дуговом
промежутке будет полным, когда частота
появления всех возможных энергетических
состояний удовлетворяет
Основное понятие термодинамики – понятие температуры, которая характеризует значение энергии и ее распределение между частицами вещества. В разреженной или в горячей плазме электронная Те и ионная Ti температуры не равны между собой, но с увеличением давления газа их значение и распределение по сечению столба дуги становятся почти одинаковыми (рис. 9). Ионная температура близка к температуре газа.
Так как дуговой разряд существует обычно не в однородном газе, а в смеси газов и паров, находящихся при высокой температуре, то необходимо знание эффективного потенциала ионизации – Ui. Практика показывает, что в смеси газов в большей степени ионизируется газ с наименьшим Ui. Расчет эффективного потенциала термической ионизации U0 выполняется по формуле Фролова (под U0 смеси, обладающей степенью ионизации x0, следует понимать потенциал ионизации некого однородного газа, в котором число заряженных частиц такое же, как и в газовой смеси).
U0 =
где k – количество газов в смеси, νi – концентрация i-го газа в смеси, Ui – потенциал ионизации i–го газа, T – абсолютная температура.
Расчет U0 в зависимости от концентрации паров в системе Fe-K при предположительной T = 5800 К (рис. 10) позволяет сделать вывод, что сравнительно небольшие добавки ионизаторов достаточны для обеспечения стабильности горения дуги (при сварке под флюсом или покрытыми электродами).
Направленное движение ионов и электронов в плазме может быть вызвано двумя причинами: