Анализ и совершенствование технологии ручной дуговой сварки неповоротных кольцевых стыков магистральных трубопроводов

Автор работы: Пользователь скрыл имя, 25 Ноября 2012 в 19:06, курсовая работа

Краткое описание

В этой работе сделана попытка проанализировать физические основы и технологию ручной дуговой сварки, систематизировать рассредоточенные по различным источникам данные о схемах и принципах организации производства работ при использовании этого метода, сравнить теоретический материал с практическим, полученным за время работы на строительстве (производственной практики) трех различных трубопроводоводных систем, а также постараться дать рекомендации по возможному усовершенствованию технологии, выводы о целесообразности и перспективах дальнейшего применения ручной дуговой сварки при сооружении объектов магистрального транспорта нефти и газа.

Содержание работы

Оглавление 4
Введение 7
1.Элементы теории сварочных процессов 11
1.1 Сварка как способ получения монолитных соединений 11
1.1.1 Понятие сварки 11
1.1.2 Механизм образования монолитного соединения 11
1.1.3 Образование монолитного соединения при сварке плавлением 13
1.1.4 Образование монолитного соединения при сварке давлением 14
1.2 Классификация сварочных процессов 16
1.2.1 Признаки классификации 16
1.2.2 Классификация сварочных процессов по физическим признакам 17
1.2.3 Классификация методов сварки магистральных трубопроводов 18
1.2.3.1 Сущность метода ручной дуговой сварки 19
1.2.3.2 Автоматическая дуговая сварка под слоем флюса 20
1.2.3.3 Автоматическая дуговая сварка в среде защитных газов 21
1.2.3.4 Автоматическая сварка неповоротных стыков порошковой проволокой с принудительным формированием шва 22
1.2.3.5 Электроконтактная сварка оплавлением 23
1.3 Физическо-металлургические явления при дуговой сварке плавящимся электродом 24
1.3.1 Физика сварочной дуги 24
1.3.1.1 Природа, строение и область существования сварочной дуги 24
1.3.1.2 Строение сварочной дуги и ее вольтамперная характеристика 25
1.3.1.3 Элементарные процессы в плазме дуги. Ионизация и деионизационные процессы в дуге 27
1.3.1.4 Термодинамическая характеристика плазмы. Понятие эффективного потенциала ионизации 30
1.3.1.5 Явления переноса, баланс энергии и температура в столбе дуги 31
1.3.1.6 Приэлектродные области дугового разряда 33
1.3.1.6.1 Эмиссионные процессы в катодной зоне. Виды электронной эмиссии 33
1.3.1.6.2 Физические явления в приэлектродных областях 34
1.3.1.6.3 Краткая характеристика приэлектродных зон 35
1.3.1.7 Элементы магнитогидродинамики сварочной дуги 37
1.3.1.7.1 Электромагнитные силы в дуге 37
1.3.1.7.2 Магнитное дутье. Влияние ферромагнитных масс 38
1.3.1.7.3 Влияние на дугу внешнего магнитного поля 39
1.3.1.8 Перенос металла в сварочной дуге 41
1.3.1.9 Краткая характеристика сварочных дуг с плавящимся электродом 43
1.3.2 Металлургические процессы при сварке 44
1.3.2.1 Процессы окисления металла шва 44
1.3.2.2 Раскисление металла сварочной ванны 46
1.3.2.3 Защита металла сварочной ванны от воздействия атмосферы 47
1.3.2.4 Покрытие электродов, его компоненты и их функции 48
1.3.2.5 Металлургические процессы при РДС покрытыми электродами 49
1.3.2.6 Особенности металлургических процессов при сварке электродами с покрытием основного и целлюлозного вида 50
1.3.2.7 Способы легирования металла шва 51
1.3.2.8 Вредные примеси при сварке и их влияние на качество металла шва 52
1.3.3 Термодеформационные процессы и превращения в металлах при сварке 54
1.3.3.1 Термодеформационные процессы при сварке 55
1.3.3.1.1 Понятие о сварочных деформациях и напряжениях 55
1.3.3.1.2 Методы определения остаточных деформаций и напряжений 58
1.3.3.1.3 Типичные поля остаточных напряжений при сварке многослойных швов 59
1.3.3.2 Образование сварных соединений и формирование первичной структуры металла шва 60
1.3.3.2.1 Понятие свариваемости 60
1.3.3.2.2 Общие положения теории кристаллизации 62
1.3.3.2.3 Особенности кристаллизации и формирования первичной структуры металла шва 67
1.3.3.2.4 Химическая неоднородность сварного соединения и ее виды 68
1.3.3.2.5 Характер изменения прочности и пластичности металлов и сплавов в области высоких температур при сварке 71
1.3.3.2.6 Горячие трещины при сварке 73
1.3.3.3 Превращения в металлах при сварке 78
1.3.3.3.1 Характерные зоны сварных соединений 78
1.3.3.3.2 Виды превращений в металле сварных соединений 80
1.3.3.3.2.1.Фазовые превращения. Кинетика диффузионного превращения 80
1.3.3.3.2.2 Кинетика мартенситного превращения 83
1.3.3.3.3 Фазовые и структурные превращения при сварке сталей. Превращения в основном металле при нагреве 84
1.3.3.3.4 Превращения в шве и основном металле при охлаждении 88
1.3.3.3.5 Способы регулирования структуры сварных соединений 92
1.3.3.3.6 Холодные трещины при сварке 93
2 Особенности технологии ручной дуговой сварки неповоротных стыков 97
2.1 Сварочные электроды 97
2.1.1 Классификация сварочных электродов 97
2.1.2 Условное обозначение сварочных электродов 99
2.1.3 Краткая характеристика материалов покрытия и стержня электродов 100
2.2 Сварные соединения и швы 103
2.2.1 Сварные соединения и швы. Виды швов и их геометрические характеристики 103
2.2.2 Конструкция шва. Назначение и технология сварки отдельных его слоев 105
2.3 Этапы разработки технологии РДС 109
2.3.1 Подготовка кромок труб 109
2.3.2 Выбор электродов 110
2.3.3 Сварочный ток 112
2.3.4 Выбор конструкции шва 114
2.3.5 Определение скорости сварки 116
2.4 Подготовительные операции 117
2.4.1 Очистка полости, осмотр, ремонт и зачистка кромок труб 117
2.4.2 Сборка стыка 118
2.4.3 Предварительный подогрев 121
2.5 Схемы и методы производства сварочно-монтажных работ 124
2.6 Особенности технологии сварки трубопроводов из различных видов стали 127
2.6.1 Сварка трубопроводов из сталей повышенной и высокой прочности 127
2.6.2 Сварка термически уплотненных сталей 128
3 Патентные изыскания 130
Заключение 132
Список литературы 136
Приложения 139

Содержимое работы - 1 файл

disser.doc

— 2.04 Мб (Скачать файл)

Внешняя энергия деформации будет  затрачиваться на преодоление сил  отталкивания, возникающих между  сближаемыми поверхностными атомами. Когда расстояния между ними будут  равны межатомному расстоянию в  решетке кристаллов, возникают квантовые  процессы взаимодействия электронных оболочек атомов. После этого общая энергия системы начнет снижаться до уровня, соответствующего энергии атомов в решетке целого кристалла, и появится выигрыш энергии, равный избыточной энергии поверхностных атомов кристаллов до их соединения — энергии активации. Тепловая энергия, сообщенная поверхностным атомам при повышении температуры, уве-личивает вероятность развития квантовых процессов электронного взаимодействия в соединении

Сварку можно отнести к классу так называемых топохимических реакций, которые отличаются двухстадийностью процесса образования прочных связей между атомами соединяемых веществ (рис. 3). Двухстадийность характерна только для микроучастков соединяемых поверхностей. На первой стадии А развивается физический контакт, т. е. осуществляется сближение соединяемых веществ на расстояние, требуемое для межатомного взаимодействия, а также происходит подготовка поверхностей к взаимодействию. На второй стадии Б — стадии химического взаимодействия – заканчивается процесс образования прочного соединения.

Практически получение монолитных соединений осложняется двумя факторами:

1) свариваемые поверхности имеют микронеровности (даже при тщательной обработке), высота которых измеряется микрометрами. Поэтому при совмещении поверхностей контакт возможен лишь в отдельных точках;

2) свариваемые поверхности имеют загрязнения, так как на любой поверхности твердого тела адсорбируются атомы внешней среды.

Для качественного соединения материалов необходимо обеспечить контакт по большей части стыкуемой поверхности и активизировать ее. Активация поверхности заключается в том, что поверхностным атомам твердого тела сообщается некоторая энергия, необходимая:

1) для обрыва связей между атомами тела и атомами внешней среды, насыщающими их свободные связи;

2) для повышения энергии поверхностных атомов до уровня энергетического барьера охватывания, т. е. для перехода их в активное состояние.

Такая энергия активации может  в общем случае сообщаться в виде теплоты (термическая активация), упругопластической деформации (механическая активация), электронного, ионного и других видов облучения (радиационная активация).

1.1.3 Образование монолитного соединения  при сварке плавлением

При сварке плавлением сближение атомов твердых тел осуществляется вследствие смачивания поверхностей тел жидким металлом, а активация поверхности твердого металла – путем сообщения ее частицам тепловой энергии. Жидкий металл может растекаться по всей поверхности тела и обеспечивать соприкосновение и прилипание (или адгезию) его молекул и поверхностного слоя твердых тел.

При затвердевании расплавленного материала слабые адгезионные связи  заменяются прочными химическими связями, соответствующими природе соединяемых  материалов и типу их кристаллической  решетки. Вводимая энергия (обычно тепловая) должна обеспечивать расплавление основного и присадочного материалов, оплавление стыка, нагрев кромки и т.д. При этом происходит усиленная диффузия компонентов в расплавленном и твердом материалах, их взаимное растворение. Эти процессы, а также кристаллизация расплавленного металла сварочной ванны обеспечивают объемное строение зоны сварки, что обычно повышает прочность сварного соединения.

Сварка плавлением происходит без  приложения осадочного давления путем  спонтанного слияния объемов  жидкого металла. Она обычно не требует тщательной подготовки и зачистки соединяемых поверхностей.

Обе стадии процесса соединений –  физический адгезионный контакт  и химическое взаимодействие, сопровождаемое диффузией, – протекают достаточно быстро (см. рис. 3, кривая 1). Для однородных металлов это не опасно. Но в случае разнородных материалов с ограниченной взаимной растворимостью практически трудно получить соединения без хрупких интерметаллических прослоек в контакте.

При быстром образовании физического  контакта твердого тела с расплавом, например, при сварке путем расплавления одного из соединяемых материалов, сначала на границе твердой и жидкой фаз будет наблюдаться пик межфазной энергии wг, аналогичный wп (см. рис. 2, б), так как переход атомной системы в новое состояние происходит не мгновенно, а за некоторый конечный промежуток времени. Длительность ретардации (задержки) пика поверхности раздела, как называют этот период, может быть приближенно рассчитана как время жизни атома перед потенциальным барьером или определена опытным путем. На основании этих данных можно определить допустимую длительность контакта твердой и жидкой фаз и оптимальную температуру сварки.

1.1.4 Образование монолитного соединения  при сварке давлением

При сварке давлением (в твердом  состоянии) сближение атомов и активация (очистка) поверхностей достигаются в результате совместной упругопластической деформации соединяемых материалов в контакте, часто одновременно с дополнительным нагревом.

Длительность стадий образования  физического контакта А и химического взаимо-действия Б здесь существенно больше, чем при сварке плавлением, и зависит от ряда факторов: физико-химических и механических свойств соединяемых материалов, состояния их поверхности, состава внешней среды, характера приложения давления и других средств активации (ультразвук, трение и т. д.).

В последнее время предложены методы приближенного расчета параметров режима сварки статическим давлением, которые подтверждаются опытом. Длительность процесса образования физического  контакта, заключающегося в смятии микронеровностей, рассчитывают по скорости ползучести. Длительность второй стадии – химического взаимодействия — оценивают по уравнению Больцмана как длительность периода активации. Расчеты основаны на представлениях о схватывании материалов в ре-зультате ползучести на контактных поверхностях и образовании прочных химических связей в местах выхода и перемещения вакансий, дислокаций и скоплений. Выход дислокаций на контактную поверхность активирует ее путем разрыва насыщенных связей, что приводит к образованию активных центров.

Однако принято считать, что  при соединении металлов в твердом  состоянии имеет значение не только схватывание, но и спекание. Спекание – комплекс диффузионных процессов, протекающих во времени при повышенных температурах. Схватывание – бездиффузионное явление – объединение кристаллических решеток, находящихся в контакте тел в результате их совместного пластического деформирования. Относительная роль схватывания и спекания в разных методах соединения металлов раз-лична и определяется в основном температурой, временем и давлением в контакте. Например, диффузионную сварку при большом времени выдержки можно считать основанной на явлении спекания. Во всех остальных случаях схватывание первично, а диффузионные и рекристаллизационные процессы, если они вообще происходят, вторичны.

1.2 Классификация сварочных процессов

1.2.1 Признаки классификации

При классификации процессов сварки целесообразно выделить три основных физических признака:

1) наличие давления;

2) вид вводимой энергии;

3) вид инструмента – носителя энергии.

Остальные признаки можно условно  отнести к техническим или  технологическим (табл.1). По виду вводимой в изделие энергии все сварочные  процессы, включая сварку, пайку, резку  и др., могут быть разделены на термические, термомеханические и прессово-механические способы.

Термические процессы идут без давления (сварка плавлением), остальные –  обычно с давлением (сварка давлением).

Термины «класс», «метод», «вид», «способ» условны, но будут использованы в  классификации, они позволяют в дальнейшем ввести четкую систему типизации процессов сварки. Термин «процесс» используют как независимый от классификационных групп.

Таблица 1

Признаки и ступени классификации  сварочных процессов

Наименование признака

Содержание признака

Ступени классификации и порядок  расположения процессов

Физические

Наличие давления при сварке

Класс

Вид энергии, вводимой при сварке

Подкласс

Вид нагрева или механического воздействия (вид инструмента)

Метод

Технические

Устанавливается для каждого метода отдельно

Группа

Подгруппа

Вид

Разновидность

Технологические

То же

Способ

Прием

Технико-экономические

Удельная энергия, необходимая для соединения, удельные затраты и т.п.

Устанавливается порядок в расположении методов сварки от механических к термическим процессам по увеличению удельных показателей


 

1.2.2 Классификация сварочных процессов  по физическим признакам

Классификация методов сварки по физическим признакам приведена в табл.2. Физические признаки – общие для  всех методов сварки. Технические признаки могут быть определены только для отдельных методов сварки.

Таблица 2

Классификация методов сварки по физическим признакам

Сварка без давления (плавлением)

Сварка давлением

Термические процессы

Термомеханические процессы

Прессово-механические процессы

Газовая

Термитная

Дуговая *

Электрошлаковая *

Индукционная

Электронно-лучевая

Фотонно-лучевая (лазерная)

Плазменно-лучевая (микроплазменная)

Контактная *

Газопрессовая

Индукционная с давлением

Дугопрессовая (дугоконтактная)

Печная с давлением

Термитная с давлением

Термокомпрессионная

Диффузионная

Холодная

Трением

Взрывом

Ультразвуковая

Вакуумным схватыванием

* - рекомендуется дополнительная классификация по техническим и технологическим признакам


 

Энергетический анализ показывает, что все известные в настоящее время процессы сварки металлов осуществляются введением только двух видов энергии – термической и механической или их сочетаний. Поэтому в группу особых процессов пока могут быть включены только нейтронная сварка пластмасс и (условно) склеивание, которое практически происходит без введения энергии. Сварка вакуумным схватыванием (не в отдельных точках, а по всему стыку) возможна только при наличии сдавливания, поэтому она также отнесена к механическим процессам, хотя при сварке здесь энергия может даже выделяться, а не вводиться извне.

Сложившийся годами термин «сварка  давлением» не совсем точен, так как  давление в этих процессах – не единственное внешнее воздействие. Однако он общеупотребителен. Давление необходимо всегда, когда при сварке отсутствует ванна расплавленного металла, и сближение атомов (их активация) достигается вследствие упругопластической деформации материала поверхностей.

Следует отметить, что и при наличии  давления может происходить расплавление металла, например, при термитной сварке с давлением, контактной точечной и шовной сварке с образованием литого ядра, стыковой сварке оплавлением, сварке трением и др.

Для всех термических процессов  сварки, независимо от вида носителя энергии (инструмента), в стык она вводится в конечном итоге всегда через расплавленный материал. Энергия хаотически движущихся частиц расплавленного материала носит в термодинамике название термической, чем обосновано наименование этих процессов.

К термомеханическим процессам  относятся процессы, идущие с введением теплоты и механической энергии сил давления при осадке. Теплота может выделяться при протекании электрического тока, газопламенном или индукционном нагреве, введении в зону сварки горячего инструмента и т. п. Сварка может вестись как с плавлением металла (частичным или по всему соединению), так и без плавления.

В основе всех прессово-механических процессов лежит пластическая деформация, создаваемая тем или иным способом в зоне сварного соединения. Для  пластичных материалов возможна деформация в холодном состоянии (холодная сварка), при увеличении свариваемых сечений и повышении прочности свариваемого материала (сталь) для уменьшения усилий деформирования и повышения пластичности материала его предварительно подогревают (кузнечная сварка). В ряде случаев нагрев свариваемых изделий осуществляется в результате преобразования первичной механической энергии в тепловую (сварка трением, ультразвуковая сварка). Давление в прессово-механических сварочных процессах может осуществляться как при помощи мощных пневмогидравлических устройств, так и за счет энергии взрыва (сварка взрывом).

Наибольшее распространение в  промышленности получили дуговые методы сварки, в которых необходимая  энергия выделяется при горении  сварочной дуги. Она идет на расплавление основного и присадочного металлов, сообщения их атомам энергии активации, образование физического контакта и др. процессы, имеющие место при сварке. Одним из способов дуговой сварки и является рассматриваемая в этой работе ручная электродуговая сварка плавящимся толстопокрытым электродом.

1.2.3 Классификация методов сварки  магистральных трубопроводов

В период расцвета трубопроводного  строительства еще в Советском  Союзе применялось множество  методов сварки неповоротных кольцевых  стыков магистральных трубопроводов. Такой вывод можно сделать хотя бы по содержанию основного ведомственного нормативного документа Миннефтегазстроя СССР, регламентирующего организацию и технологию сварочных работ – ВСН 006-89 «Строительство магистральных и промысловых трубопроводов. Сварка». Данный документ является действующим. Он регламентирует:

  • ручную электродуговую сварку штучными толстопокрытыми электродами;
  • автоматическую сварку под флюсом;
  • сварку порошковой проволокой с принудительным формированием шва;
  • автоматическую и полуавтоматическую сварку в защитных газах;
  • ручную аргонодуговую сварку корневого шва;
  • стыковую сварку оплавлением;
  • сварку вращающейся магнитоуправляемой дугой.

Информация о работе Анализ и совершенствование технологии ручной дуговой сварки неповоротных кольцевых стыков магистральных трубопроводов