Анализ и совершенствование технологии ручной дуговой сварки неповоротных кольцевых стыков магистральных трубопроводов

Автор работы: Пользователь скрыл имя, 25 Ноября 2012 в 19:06, курсовая работа

Краткое описание

В этой работе сделана попытка проанализировать физические основы и технологию ручной дуговой сварки, систематизировать рассредоточенные по различным источникам данные о схемах и принципах организации производства работ при использовании этого метода, сравнить теоретический материал с практическим, полученным за время работы на строительстве (производственной практики) трех различных трубопроводоводных систем, а также постараться дать рекомендации по возможному усовершенствованию технологии, выводы о целесообразности и перспективах дальнейшего применения ручной дуговой сварки при сооружении объектов магистрального транспорта нефти и газа.

Содержание работы

Оглавление 4
Введение 7
1.Элементы теории сварочных процессов 11
1.1 Сварка как способ получения монолитных соединений 11
1.1.1 Понятие сварки 11
1.1.2 Механизм образования монолитного соединения 11
1.1.3 Образование монолитного соединения при сварке плавлением 13
1.1.4 Образование монолитного соединения при сварке давлением 14
1.2 Классификация сварочных процессов 16
1.2.1 Признаки классификации 16
1.2.2 Классификация сварочных процессов по физическим признакам 17
1.2.3 Классификация методов сварки магистральных трубопроводов 18
1.2.3.1 Сущность метода ручной дуговой сварки 19
1.2.3.2 Автоматическая дуговая сварка под слоем флюса 20
1.2.3.3 Автоматическая дуговая сварка в среде защитных газов 21
1.2.3.4 Автоматическая сварка неповоротных стыков порошковой проволокой с принудительным формированием шва 22
1.2.3.5 Электроконтактная сварка оплавлением 23
1.3 Физическо-металлургические явления при дуговой сварке плавящимся электродом 24
1.3.1 Физика сварочной дуги 24
1.3.1.1 Природа, строение и область существования сварочной дуги 24
1.3.1.2 Строение сварочной дуги и ее вольтамперная характеристика 25
1.3.1.3 Элементарные процессы в плазме дуги. Ионизация и деионизационные процессы в дуге 27
1.3.1.4 Термодинамическая характеристика плазмы. Понятие эффективного потенциала ионизации 30
1.3.1.5 Явления переноса, баланс энергии и температура в столбе дуги 31
1.3.1.6 Приэлектродные области дугового разряда 33
1.3.1.6.1 Эмиссионные процессы в катодной зоне. Виды электронной эмиссии 33
1.3.1.6.2 Физические явления в приэлектродных областях 34
1.3.1.6.3 Краткая характеристика приэлектродных зон 35
1.3.1.7 Элементы магнитогидродинамики сварочной дуги 37
1.3.1.7.1 Электромагнитные силы в дуге 37
1.3.1.7.2 Магнитное дутье. Влияние ферромагнитных масс 38
1.3.1.7.3 Влияние на дугу внешнего магнитного поля 39
1.3.1.8 Перенос металла в сварочной дуге 41
1.3.1.9 Краткая характеристика сварочных дуг с плавящимся электродом 43
1.3.2 Металлургические процессы при сварке 44
1.3.2.1 Процессы окисления металла шва 44
1.3.2.2 Раскисление металла сварочной ванны 46
1.3.2.3 Защита металла сварочной ванны от воздействия атмосферы 47
1.3.2.4 Покрытие электродов, его компоненты и их функции 48
1.3.2.5 Металлургические процессы при РДС покрытыми электродами 49
1.3.2.6 Особенности металлургических процессов при сварке электродами с покрытием основного и целлюлозного вида 50
1.3.2.7 Способы легирования металла шва 51
1.3.2.8 Вредные примеси при сварке и их влияние на качество металла шва 52
1.3.3 Термодеформационные процессы и превращения в металлах при сварке 54
1.3.3.1 Термодеформационные процессы при сварке 55
1.3.3.1.1 Понятие о сварочных деформациях и напряжениях 55
1.3.3.1.2 Методы определения остаточных деформаций и напряжений 58
1.3.3.1.3 Типичные поля остаточных напряжений при сварке многослойных швов 59
1.3.3.2 Образование сварных соединений и формирование первичной структуры металла шва 60
1.3.3.2.1 Понятие свариваемости 60
1.3.3.2.2 Общие положения теории кристаллизации 62
1.3.3.2.3 Особенности кристаллизации и формирования первичной структуры металла шва 67
1.3.3.2.4 Химическая неоднородность сварного соединения и ее виды 68
1.3.3.2.5 Характер изменения прочности и пластичности металлов и сплавов в области высоких температур при сварке 71
1.3.3.2.6 Горячие трещины при сварке 73
1.3.3.3 Превращения в металлах при сварке 78
1.3.3.3.1 Характерные зоны сварных соединений 78
1.3.3.3.2 Виды превращений в металле сварных соединений 80
1.3.3.3.2.1.Фазовые превращения. Кинетика диффузионного превращения 80
1.3.3.3.2.2 Кинетика мартенситного превращения 83
1.3.3.3.3 Фазовые и структурные превращения при сварке сталей. Превращения в основном металле при нагреве 84
1.3.3.3.4 Превращения в шве и основном металле при охлаждении 88
1.3.3.3.5 Способы регулирования структуры сварных соединений 92
1.3.3.3.6 Холодные трещины при сварке 93
2 Особенности технологии ручной дуговой сварки неповоротных стыков 97
2.1 Сварочные электроды 97
2.1.1 Классификация сварочных электродов 97
2.1.2 Условное обозначение сварочных электродов 99
2.1.3 Краткая характеристика материалов покрытия и стержня электродов 100
2.2 Сварные соединения и швы 103
2.2.1 Сварные соединения и швы. Виды швов и их геометрические характеристики 103
2.2.2 Конструкция шва. Назначение и технология сварки отдельных его слоев 105
2.3 Этапы разработки технологии РДС 109
2.3.1 Подготовка кромок труб 109
2.3.2 Выбор электродов 110
2.3.3 Сварочный ток 112
2.3.4 Выбор конструкции шва 114
2.3.5 Определение скорости сварки 116
2.4 Подготовительные операции 117
2.4.1 Очистка полости, осмотр, ремонт и зачистка кромок труб 117
2.4.2 Сборка стыка 118
2.4.3 Предварительный подогрев 121
2.5 Схемы и методы производства сварочно-монтажных работ 124
2.6 Особенности технологии сварки трубопроводов из различных видов стали 127
2.6.1 Сварка трубопроводов из сталей повышенной и высокой прочности 127
2.6.2 Сварка термически уплотненных сталей 128
3 Патентные изыскания 130
Заключение 132
Список литературы 136
Приложения 139

Содержимое работы - 1 файл

disser.doc

— 2.04 Мб (Скачать файл)

1)наружную цилиндрическую поверхность  (НП);

2)внутреннюю цилиндрическую поверхность (ВП);

3)торцовую плоскость кромок (ТП);

4)образующие линии на наружной  цилиндрической поверхности (ОЛ), которые могут иметь по две  опорные точки (ОТ).

Можно считать, что совпадение соответствующих  базирующих поверхностей, линий или точек одной и другой трубы или определенное их взаимное расположение обеспечит совпадение осей, соединяемых трубой. Рассмотрим несколько независимых условий, соблюдение которых позволит обеспечить качественную сборку соединяемых труб. В этом случае базирующие элементы первой трубы обозначим одним штрихом, а второй трубы — двумя штрихами. Условия соосности труб (рис. 50) можно записать следующим образом:

1)I – (НП)’ (НП)’’

2)II – (ВП)’ (ВП)’’

3)III – (ТП)’ (ТП)’’

4)IV – 2(ОЛ)’ 2(ОЛ)’’ при 0 < α < (на рисунке не показано).

Здесь α – угол между опорами; — знак совпадения базирующих поверхностей, линий и точек.

Центровку труб выполняют различными механизмами и приспособлениями в зависимости от применяемого способа сварки. Условие I выполняется при центровке труб для дуговой сварки с применением кондукторов в виде опор, при сборке труб наружными центраторами и в зажимных устройствах электроконтактной сварки и т. п. Условие II получило широкое распространение при сборке, труб с применением внутреннего центратора. Условие III используют в том случае, когда торцовые плоскости перпендикулярны к оси трубы. Подобное условие выполняют при сборке труб различных диаметров, когда используют специальные переходы. Условие IV основано на совпадении линий или точек, его используют при центровке труб на сборочных кондукторах, которые изготовляют из труб или швеллеров. Сборку стыков при выполнении условия I особенно широко применяют при поворотной сварке стыков магистральных трубопроводов.

Согласно [6], в трассовых условиях при центровке стыков для РДС  труб диаметром до 539 мм могут применяться как наружные, так и внутренние центраторы, для труб диаметром 539 мм и более может применяться только внутренний центратор. Сборка стыка с помощью наружного центратора для труб диаметром более 539 мм допускается только в том случае, если применение внутреннего невозможно (например, при сварке захлестного стыка). При сборке стыков на наружных центраторах количество прихваток, равномерно распределенных по периметру стыка, и их длина зависят от диаметра трубы и должны соответствовать данным, приведенным в таблице 15. Режим сварки прихваток – как для корневого слоя шва.

Таблица 15

Количество прихваток и их длина  при сборке стыка на наружном центраторе

Диаметр стыка, мм

Ориентировочное количество прихваток, не менее

Длина прихваток, не менее, мм

До 400

2

30…50

400…1000

3

60…100

1000…1400

4

100…200


 

При сборке стыков труб с одинаковой нормативной толщиной стенки должны соблюдаться следующие требования:

1) внутреннее смещение внутренних кромок бесшовных труб не должно превышать 2 мм. Допускаются на длине не более 100 мм местные внутренние смещения кромок труб, не превышающие 3 мм. Величина наружного смещения в этом случае не нормируется, однако должен быть обеспечен плавный переход поверхности шва к основному металлу в соответствии с технологической картой. Оценку величины смещения внутренних кромок следует проверять непосредственным измерением с использованием шаблонов марки УПС-4;

2) смещение кромок электросварных труб не должно превышать 20% нормативной толщины стенки, но не более 3 мм. Измерение величины смещения кромок допускается проводить по наружным поверхностям труб сварочным шаблоном. Для труб с нормативной толщиной стенки до 10 мм допускается смещение кромок до 40% нормативной толщины стенки, но не более 2 мм.

Непосредственное соединение на трассе разнотолщинных труб одного и того же диаметра или труб с деталями (этот вид работ относится к специальным сварочным работам) – тройниками, переходами, днищами, отводами – допускается при следующих условиях:

1) если разность толщин стенок стыкуемых труб или труб с деталями (максимальная из которых 12 мм и менее) не превышает 2,5 мм;

2) если разность толщин стенок стыкуемых труб или труб с деталями (максимальная из которых более 12 мм) не превышает 3 мм.

Соединение труб или труб с деталями с большей разностью толщин стенок осуществляется путем вварки между стыкуемыми трубами или трубами с деталями переходников или вставок промежуточной толщины, длина которых должна быть не менее 250 мм.

При разнотолщинности до 1,5 толщины  допускается непосредственная сборка и сварка труб при специальной разделке кромок более толстой стенки трубы или детали. Конструктивные размеры разделки кромок и сварных швов должны соответствовать указанным на рис. 51. Смещение кромок при сварке разностенных труб, измеряемое по наружной поверхности, не должно превышать допусков, установленных для сварки труб с одинаковой нормативной толщиной стенки.

2.4.3 Предварительный подогрев

После окончания сборки стыка необходимо, если это предусмотрено проектом, провести предварительный подогрев. Он является важнейшей технологической  операцией, позволяющей регулировать сварочный цикл при сварке. Структура, а значит, и свойства сварного соединения в значительной мере определяются скоростью охлаждения металла в диапазоне температур 800–500ºС. При охлаждении металла шва и зоны термического влияния с высокой скоростью появляется опасность образования закалочных структур, обладающих повышенной хрупкостью, а следовательно, склонностью к трещинообразованию. Особенно это относится к низколегированным сталям с эквивалентом углерода 0,45 и более (химический эквивалент углерода вычисляется по формуле:

 

Сэ = C +

 

где C, Mn, Cr, Mo, V, Ti, Nb, Ni, Cu, B – содержание соответствующих элементов в % от массы в составе трубной стали).Эти стали весьма чувствительны к действию термического цикла, к надрезам и ударным нагрузкам; ЗТВ при сварке этих сталей склонна к повышенной хрупкости. Наиболее ярко эти явления наблюдаются при РДС, когда значение погонной энергии q /v мало, из-за чего скорость охлаждения велика. При заданной толщине стенки регулировать скорость охлаждения околошовной зоны можно, изменяя начальную температуру металла предварительным подогревом. Особенно это важно при сварке целлюлозными электродами, когда скорость охлаждения корневого слоя максимальна по сравнению со скоростью охлаждения других слоев шва, уменьшена погонная энергия сварки и увеличена склонность к образованию трещин вследствие наводораживания металла шва. Предварительный подогрев уменьшает скорость охлаждения металла шва и околошовной зоны и не только способствует образованию равновесных структур в этой зоне, но и создает благоприятные условия для активизации диффузии водорода. Необходимость и температура предварительного подогрева выбираются в соответствии с табл.6,7 [5] (требования этих таблиц не распространяются на термоупрочненные стали). При сварке корневого слоя шва термически упрочненных труб с нормативным пределом прочности 637 МПа (65 кгс/мм2) электродами с целлюлозным видом покрытия независимо от температуры окружающего воздуха необходим предварительный подогрев стыка до температуры не ниже +100°С, но не выше +200°С; при сварке корневого слоя шва электродами с основным видом покрытия при температуре окружающего воздуха +5°С и ниже температура кромок труб стыка непосредственно перед сваркой должна быть не ниже +50°С, но не более +200°С

Таблица 16

Температура предварительного подогрева  при сварке корневого слоя шва  электродами с целлюлозным видом  покрытия

Эквивалент  углерода металла труб,%

Температура предварительного подогрева,ºС, при  толщине стенки трубы,мм

7,1…8

8,1…9

9,1…10

10,1…11

11,1…12

12,1…13

13,1…14

14,1…15

15,1…16

16,1…17

17,1…18

18,1…19

19,1…20

20,1…21

21,1…22

22,1…23

23,1…24

24,1…25

25,1…26

0,32–0,36

н

н

н

н

н

н

н

н

н

-15º/100

-10º/100

-5º/100

0º/100

100

100

100

100

100

100

0,37–0,41

н

н

-20º/100

0º/100

+20º/100

100

100

100

100

100

100

150

150

150

150

150

150

150

150

0,42–0,46

н

-10º/100

+20º/100

100

100

150

150

150

150

150

150

150

150

200

200

200

200

200

200

0,47–0,51

+20º/100

100

100

150

150

150

200

200

200

200

200

200

200

200

200

200

200

200

200


Таблица 17

Температура предварительного подогрева  при сварке корневого слоя шва  электродами с основным видом  покрытия

Эквивалент  углерода металла труб,%

Температура предварительного подогрева,ºС, при  толщине стенки трубы,мм

До 10

10,1…11

11,1…12

12,1…13

13,1…14

14,1…15

15,1…16

16,1…17

17,1…18

18,1…19

19,1…20

20,1…21

21,1…22

22,1…23

23,1…24

24,1…25

Более 25

0,37…0,41

н

н

н

н

н

н

-35º/100

-25º/100

-15º/100

-10º/100

0º/100

100

100

100

100

100

100

0,42…0,46

н

н

н

-35º/100

-15º/100

0º/100

+10º/100

100

100

100

100

100

100

100

100

100

100

0,47…0,51

н

-20º/100

0º/100

100

100

100

100

100

150

150

150

150

150

150

150

150

150


В таблицах 16 и 17 приняты обозначения:

н




- подогрев не требуется 

-20º/100




- подогрев при температуре окружающего  воздуха ниже указанной в левой части до температуры, указанной в правой части 

100




- подогрев до указанной температуры при любой температуре окружающего воздуха 

Непосредственно перед сваркой  производится просушка кольцевыми нагревателями  торцов труб и прилегающих к ним  участков шириной не менее 150 мм. Просушка торцов труб нагревом до температуры 20–50°С обязательна:

1)при наличии влаги на трубах  независимо от способа сварки  и прочности основного металла;

2)при температуре окружающего  воздуха ниже +5°С в случае сварки  труб с нормативным временным сопротивлением разрыву 539 МПа (55 кгс/мм ) и выше

Если по условиям необходимы и просушка, и подогрев, то обязательной является только последняя операция. Перед возобновлением сварки незавершенного стыка труб при температуре окружающего воздуха +5°С и ниже, а также при наличии влаги стык должен быть просушен.

Температуру предварительного подогрева  перед сваркой труб из различных  марок сталей или разностенных труб, каждая из которых должна быть подогрета  на различную температуру, устанавливают по ее максимальному значению. Температуру подогрева свариваемых кромок нужно контролировать контактными термометрами. Замерять температуру следует на расстоянии 10-15 мм от торца трубы; место замера необходимо предварительно зачистить металлической щеткой. Если при замере температуры непосредственно перед сваркой будет обнаружено, что температура стыка оказалась ниже установленной в табл. 16 и 17, то необходим повторный нагрев.

2.5 Схемы и методы производства  сварочно-монтажных работ

В зависимости от вида выбранных электродов можно выделить две схемы сварки:

1) сварка всего стыка электродами с основным видом покрытия;

2) сварка корня шва и «горячего прохода» электродами с целлюлозным видом покрытия, а остальных слоев – электродами с основным видом покрытия.

В зарубежной практике нашла применение схема, в соответствии с которой  весь стык варится целлюлозными электродами. В России она не применяется.

Монтаж и сварку неповоротных стыков магистральных трубопроводов выполняют, в основном, четырьмя методами:

1)первый метод – элементарный. Его используют при небольших объемах работ и малых диаметрах труб (325…529 мм). Нитку трубопровода наращивают из отдельных труб или секций с выполнением всех слоев шва одним сварщиком. Он выполняет сварку собранного и прихваченного стыка от начала до конца в разных пространственных положениях. В этом случае сварку первого слоя шва выполняют сначала с одной стороны стыка, а затем с другой. После зачистки корневого слоя от шлака аналогично сваривают второй и последующие слои. Существенным недостатком этого метода сварки является низкая производительность, которая обусловлена необходимостью перехода с одной стороны стыка на другую, а также перетаскиванием сварочного кабеля и инструмента. От сварщика требуется высокая квалификация и универсальность.

2)второй метод – метод с  простым расчленением – применяют  при бόльших объемах работ  и сварке трубопроводов значительных  диаметров. Обычно одна пара  сварщиков работает со сборщиками  на сборке и сварке корневого  слоя шва, а остальные две  пары или тройки сварщиков сваривают каждая свою часть стыка до конца, начиная со второго слоя.

3)третий метод сборки и сварки  неповоротных стыков трубопроводов  – поточно-групповой – применяется  при очень больших объемах  работ. Поточно-групповой метод  с использованием электродов с целлюлозным покрытием широко распространен в зарубежной практике строительства магистральных трубопроводов. В отечественном трубопроводном строительстве этот метод часто применяют в сочетании со вторым методом и использованием электродов с основным покрытием. Процесс сборки и сварки неповоротных стыков труб при поточно-групповом методе проводится последовательно в несколько этапов:

а) на первом этапе подготовительное звено разгружает секции труб с плетевозов и укладывает их вдоль бровки траншеи, очищает полости секций труб от наледи, земли, снега, посторонних предметов. При необходимости правят вмятины и обрезают торцы труб. Зачищают кромки труб шлифовальными машинками или резцами и собирают стыки с помощью центраторов, обеспечивая необходимый зазор между кромками для сварки;

Информация о работе Анализ и совершенствование технологии ручной дуговой сварки неповоротных кольцевых стыков магистральных трубопроводов