Анализ и совершенствование технологии ручной дуговой сварки неповоротных кольцевых стыков магистральных трубопроводов

Автор работы: Пользователь скрыл имя, 25 Ноября 2012 в 19:06, курсовая работа

Краткое описание

В этой работе сделана попытка проанализировать физические основы и технологию ручной дуговой сварки, систематизировать рассредоточенные по различным источникам данные о схемах и принципах организации производства работ при использовании этого метода, сравнить теоретический материал с практическим, полученным за время работы на строительстве (производственной практики) трех различных трубопроводоводных систем, а также постараться дать рекомендации по возможному усовершенствованию технологии, выводы о целесообразности и перспективах дальнейшего применения ручной дуговой сварки при сооружении объектов магистрального транспорта нефти и газа.

Содержание работы

Оглавление 4
Введение 7
1.Элементы теории сварочных процессов 11
1.1 Сварка как способ получения монолитных соединений 11
1.1.1 Понятие сварки 11
1.1.2 Механизм образования монолитного соединения 11
1.1.3 Образование монолитного соединения при сварке плавлением 13
1.1.4 Образование монолитного соединения при сварке давлением 14
1.2 Классификация сварочных процессов 16
1.2.1 Признаки классификации 16
1.2.2 Классификация сварочных процессов по физическим признакам 17
1.2.3 Классификация методов сварки магистральных трубопроводов 18
1.2.3.1 Сущность метода ручной дуговой сварки 19
1.2.3.2 Автоматическая дуговая сварка под слоем флюса 20
1.2.3.3 Автоматическая дуговая сварка в среде защитных газов 21
1.2.3.4 Автоматическая сварка неповоротных стыков порошковой проволокой с принудительным формированием шва 22
1.2.3.5 Электроконтактная сварка оплавлением 23
1.3 Физическо-металлургические явления при дуговой сварке плавящимся электродом 24
1.3.1 Физика сварочной дуги 24
1.3.1.1 Природа, строение и область существования сварочной дуги 24
1.3.1.2 Строение сварочной дуги и ее вольтамперная характеристика 25
1.3.1.3 Элементарные процессы в плазме дуги. Ионизация и деионизационные процессы в дуге 27
1.3.1.4 Термодинамическая характеристика плазмы. Понятие эффективного потенциала ионизации 30
1.3.1.5 Явления переноса, баланс энергии и температура в столбе дуги 31
1.3.1.6 Приэлектродные области дугового разряда 33
1.3.1.6.1 Эмиссионные процессы в катодной зоне. Виды электронной эмиссии 33
1.3.1.6.2 Физические явления в приэлектродных областях 34
1.3.1.6.3 Краткая характеристика приэлектродных зон 35
1.3.1.7 Элементы магнитогидродинамики сварочной дуги 37
1.3.1.7.1 Электромагнитные силы в дуге 37
1.3.1.7.2 Магнитное дутье. Влияние ферромагнитных масс 38
1.3.1.7.3 Влияние на дугу внешнего магнитного поля 39
1.3.1.8 Перенос металла в сварочной дуге 41
1.3.1.9 Краткая характеристика сварочных дуг с плавящимся электродом 43
1.3.2 Металлургические процессы при сварке 44
1.3.2.1 Процессы окисления металла шва 44
1.3.2.2 Раскисление металла сварочной ванны 46
1.3.2.3 Защита металла сварочной ванны от воздействия атмосферы 47
1.3.2.4 Покрытие электродов, его компоненты и их функции 48
1.3.2.5 Металлургические процессы при РДС покрытыми электродами 49
1.3.2.6 Особенности металлургических процессов при сварке электродами с покрытием основного и целлюлозного вида 50
1.3.2.7 Способы легирования металла шва 51
1.3.2.8 Вредные примеси при сварке и их влияние на качество металла шва 52
1.3.3 Термодеформационные процессы и превращения в металлах при сварке 54
1.3.3.1 Термодеформационные процессы при сварке 55
1.3.3.1.1 Понятие о сварочных деформациях и напряжениях 55
1.3.3.1.2 Методы определения остаточных деформаций и напряжений 58
1.3.3.1.3 Типичные поля остаточных напряжений при сварке многослойных швов 59
1.3.3.2 Образование сварных соединений и формирование первичной структуры металла шва 60
1.3.3.2.1 Понятие свариваемости 60
1.3.3.2.2 Общие положения теории кристаллизации 62
1.3.3.2.3 Особенности кристаллизации и формирования первичной структуры металла шва 67
1.3.3.2.4 Химическая неоднородность сварного соединения и ее виды 68
1.3.3.2.5 Характер изменения прочности и пластичности металлов и сплавов в области высоких температур при сварке 71
1.3.3.2.6 Горячие трещины при сварке 73
1.3.3.3 Превращения в металлах при сварке 78
1.3.3.3.1 Характерные зоны сварных соединений 78
1.3.3.3.2 Виды превращений в металле сварных соединений 80
1.3.3.3.2.1.Фазовые превращения. Кинетика диффузионного превращения 80
1.3.3.3.2.2 Кинетика мартенситного превращения 83
1.3.3.3.3 Фазовые и структурные превращения при сварке сталей. Превращения в основном металле при нагреве 84
1.3.3.3.4 Превращения в шве и основном металле при охлаждении 88
1.3.3.3.5 Способы регулирования структуры сварных соединений 92
1.3.3.3.6 Холодные трещины при сварке 93
2 Особенности технологии ручной дуговой сварки неповоротных стыков 97
2.1 Сварочные электроды 97
2.1.1 Классификация сварочных электродов 97
2.1.2 Условное обозначение сварочных электродов 99
2.1.3 Краткая характеристика материалов покрытия и стержня электродов 100
2.2 Сварные соединения и швы 103
2.2.1 Сварные соединения и швы. Виды швов и их геометрические характеристики 103
2.2.2 Конструкция шва. Назначение и технология сварки отдельных его слоев 105
2.3 Этапы разработки технологии РДС 109
2.3.1 Подготовка кромок труб 109
2.3.2 Выбор электродов 110
2.3.3 Сварочный ток 112
2.3.4 Выбор конструкции шва 114
2.3.5 Определение скорости сварки 116
2.4 Подготовительные операции 117
2.4.1 Очистка полости, осмотр, ремонт и зачистка кромок труб 117
2.4.2 Сборка стыка 118
2.4.3 Предварительный подогрев 121
2.5 Схемы и методы производства сварочно-монтажных работ 124
2.6 Особенности технологии сварки трубопроводов из различных видов стали 127
2.6.1 Сварка трубопроводов из сталей повышенной и высокой прочности 127
2.6.2 Сварка термически уплотненных сталей 128
3 Патентные изыскания 130
Заключение 132
Список литературы 136
Приложения 139

Содержимое работы - 1 файл

disser.doc

— 2.04 Мб (Скачать файл)

 

Выбранный электрод должен обеспечивать необходимый провар внутренних кромок изделия, обеспечивая удержание  металла от стекания во всех пространственных положениях в сочетании с плавным  очертанием внешней поверхности  валика шва.

2.3.3 Сварочный ток

Как уже отмечалось выше, сварку магистральных трубопроводов ведется только на постоянном токе прямой и обратной полярности. В общем случае сварочный ток может быть рассчитан по следующим методикам:

1) приближенно вычислен по одной из следующих эмпирических формул в зависимости от:

а) диаметра электрода:

 

Iсв = K1*

Ιсв = dэ(K2+αdэ)

 

где величины K1=20–25, K2=20, α=6 представляют собой коэффициенты, найденные опытным путем.

б)диаметра электрода и допустимой плотности тока для электродов с  конкретным видом покрытия:

 

Iсв =

j

 

где j – допустимая плотность тока, определяемая по таблице 10

Таблица 10

Значения допускаемой плотности  тока,А/мм2, для электродов с различными видами покрытия

Вид покрытия

Диаметр электрода,мм

3

4

5

6

Рудно-кислое,рутиловое*

14…20

11,5…16

10…13,5

9,5…12,5

Фтористо-кальциевое (основное)

13…18,5

10…14,5

9…12,5

8,5…12

Целлюлозное

11,3…15,5

11,1…14,3

9,1…12,7

7…7,7

*при сварке магистральных трубопроводов  не используются


 

При сварке в вертикальном и потолочном положении ток уменьшается на 15–20% во избежание стекания жидкого металла.

2) сварочный ток может быть выбран из следующих таблиц, являющихся таблицами ВСН 006-89 (табл.14,15[5])

Таблица 11

Рекомендуемые значения сварочного тока при сварке электродами с основным видом покрытия способом «на подъем»

Диаметр электродов, мм

Сварочный ток (А) в зависимости  от пространственного положения  шва

нижнее

вертикальное

потолочное

2,0;2,5

50-90

40-80

40-50

3,0-3,25

90-130

80-120

90-110

4,0

140-180

110-170

150-180


Таблица 12

Рекомендуемые значения сварочного тока при сварке электродами способом «на спуск»

Диаметр электродов, мм

Слой

Сварочный ток (А) в зависимости  от пространственного положения шва

нижнее

вертикальное

потолочное

Электроды с целлюлозным видом покрытия

3,0-3,25

1

90-110

90-110

80-100

4,0

1

120-160

120-160

100-140

4,0

«Горячий» проход

140-180

150-170

140-170

5,0

«Горячий» проход и заполняющие слои

180-200

200-220

160-180

Электроды с основным видом покрытия

3,0

1

80-100

110-130

90-110


Указанные в таблице 11 электроды  диаметра 2 и 2,5 мм применяются обычно при ремонте стыков, который относится к специальным сварочным работам.

Однако обычно производитель указывает  значения сварочного тока, рекомендуемые  для его электродов. Эта информация может быть найдена в документации к электродам либо на упаковке с электродами.

2.3.4 Выбор конструкции шва

Вид шва определяется исходя из толщины  стенок трубы и формы разделки. Толщина стенок трубы определяет количество слоев шва (без учета подварочного). Выбор может осуществляться по двум методикам:

1) исходя из следующих расчетов (см. стр.130[2]). При сварке стыковых швов площадь поперечного сечения металла, наплавленного за один проход, при которой обеспечиваются оптимальные условия формирования шва, должна составлять для первого прохода (при проварке корневого слоя) F1 = (6–8)dэ , для последующих проходов – Fп = (8–12)dэ , где dэ – диаметр электрода. Для определения числа проходов в стыковых швах учитывают общую площадь поперечного сечения наплавленного металла (рис. 46):

 

Fн = 2F’+F’’+F’’’ = h 2tg

+bs+
q(2htg
+b+6)

 

Число проходов определяют, учитывая общую площадь поперечного сечения  металла при первом и каждом последующем проходе:

 

n =

+1

 

2) выбор может осуществляться согласно ВСН [5] в соответствии с табл.16 (табл.13 в данной работе)

Таблица 13

Минимально допустимое число слоев  шва в зависимости от толщины стенки трубы

Толщина стенки трубы, мм

Минимальное число слоев шва при сварке корневого слоя шва электродами с разным видом покрытия

целлюлозный

основной

До 10

3

2

Свыше 10-15

4

3

Свыше 15-20

5

4

Свыше 20-25

6

5

Свыше 25-32

7

6


 

При увеличении толщины стенки свыше 32 мм число слоев шва возрастает на 1 через каждые 2,5 мм.

Форма разделки, а точнее ее ширина определяет, будет ли шов состоять из одноваликовых слоев или из многоваликовых (см. п. 2.2.2).

При разработке технологии сварки необходимо определить еще один геометрический параметр стыка – зазор. Как и в случае с числом слоев, он может либо быть рассчитан, либо выбран из таблиц ВСН [5]:

1)расчет зазора при ручной  сварке может быть сделан исходя  из требуемой толщины первого  (корневого) слоя шва x (см. рис. 47):

 

x = c +

(d b + L sin2α)

 

где x – толщина первого слоя шва, c – притупление, d – диаметр электрода, b – сварочный зазор, L – условная длина дуги, α – угол скоса кромок. Тогда при известной (заданной) толщине корневого слоя и остальных параметрах зазор будет равен:

 

b = 2tgα(c–x)+d + L sin2α

 

2)ВСН[5] (табл.4[5]) устанавливает величину  зазора в зависимости от толщины  стенок трубы, диаметра и вида покрытия применяемых электродов

Таблица 14

Величина зазора при сборке

Способ сварки

Диаметр электрода или сварочной проволоки, мм

Величина зазора при толщине  стенки трубы, мм

до 8

8-10

10 и более

Ручная дуговая сварка электродами с основным покрытием

2,0-2,5

1,5-2,5

-

-

3,0-3,25

2,0-3,0

2,5-3,5

3,0-3,5

Ручная дуговая сварка электродами с целлюлозным покрытием

3,0-3,25

1,5-2,0

-

-

4,0

-

1,5-2,5

1,5-2,5

Ручная дуговая сварка электродами с рутиловым покрытием*

2,0-2,5

1,5-2,5

-

-

3,0-3,25

2,0-3,0

2,5-3,5

3,0-3,5

* при сварке магистральных трубопроводов  не используются


2.3.5 Определение скорости сварки

 Рекомендуемая для нормального формирования шва скорость сварки зависит от параметров шва и силы сварочного тока. Она может быть вычислена по формуле:

 

vсв = αн Iсв

 

где αн – коэффициент наплавки, ρ – плотность наплавленного металла, Fн – площадь поперечного сечения металла, наплавленного за данный проход. Скорость дуговой сварки обычно задают и учитывают косвенно по необходимым размерам получаемого шва. При разработке технологии сварки, исходя из условий получения минимальных деформаций сварных конструкций, возникает необходимость оценки погонной энергии в зависимости от размеров шва. Полученное значение скорости сварки позволяет определить величину теплового воздействия сварочной дуги на свариваемый металл – погонную энергию дуги qп:

 

qп = q/vсв = IсвUдη / vсв

 

где Iсв,Uд – сварочный ток и напряжение дуги, η – эффективный КПД дуги.

2.4 Подготовительные операции

Непосредственно перед сваркой  стыка необходимо провести подготовку. Она состоит из ряда последовательных операций, набор которых в конкретных условиях зависит от состояния труб, их диаметра, марки стали, климатических и погодных условий. В общем случае можно выделить визуальный осмотр кромок труб, очистку полости труб (трубных секций) правку и ремонт допустимых повреждений, а также удаление (вырезку) недопустимых, очистку кромок труб, сборку и предварительный подогрев.

2.4.1 Очистка полости, осмотр, ремонт и зачистка кромок труб

Полость трубы необходимо очистить от грунта, снега, грязи и др. посторонних  предметов. Очистку необходимо вести  по всей длине трубы или секции для возможности беспрепятственного прохода центратора и особенно тщательно на расстоянии 1 м от края торцов труб, т.к. попадание в зону сварки влаги от подтаявшего снега, грязи недопустимо. После очистки необходимо выполнить осмотр торцов труб. Допускается правка плавных вмятин на торцах труб глубиной до 3,5% диаметра труб и деформированных концов труб безударными разжимными устройствами (для этих целей может применяться безударное разжимное устройство УПВ-141, предназначенное для правки вмятин на трубах диаметром от 630 до 1420 мм и толщиной стенки до 22 мм; в качестве рабочего органа УПВ-141 использует гидравлический домкрат с усилием 300 кН). При этом на трубах из сталей с нормативным временным сопротивлением разрыву до 539 МПа (55 кгс/мм2) допускается правка вмятин и деформированных концов труб при положительных температурах без подогрева. При отрицательных температурах окружающего воздуха необходим подогрев на 100–150°С. На трубах из сталей с нормативным временным сопротивлением разрыву 539 МПа (55 кгс/мм2) и выше — с местным подогревом на 150–200°С при любой температуре окружающего воздуха. Участки и торцы труб с вмятиной глубиной более 3,5% диаметра трубы или имеющие надрывы необходимо вырезать. Допускается ремонт сваркой забоин и задиров фасок глубиной до 5 мм. Концы труб с забоинами и задирами фасок глубиной более 5 мм следует обрезать. Правку труб после газокислородной и воздушно-пламенной резки можно осуществлять только с предварительным подогревом до 150–200ºС, что связано с возможностью охрупчивания поверхности реза из-за образования закалочных структур и азотирования кромки.

После правки и ремонта необходимо провести зачистку кромок и прилегающих  к ним наружной и внутренней поверхности  труб абразивным инструментом на ширину не менее 10 мм от стыка до металлического блеска. Зачистка позволяет удалить из зоны сварки возможные источники водорода, снизив вероятность образования трещин и пор. Если концы труб покрыты праймером или специальным покрытием, то перед зачисткой необходимо удалить их, а также различного рода масла бензином или специальным растворителем на глубину 40–50 мм от торца.

2.4.2 Сборка стыка

После проведения зачистки торцов труб проводится сборка стыка. Операция эта является весьма ответственной, т.к. от нее во многом зависит качество будущего шва. Современные методы сварки позволяют получать качественные сварные соединения при условии обеспечения незначительных смещений кромок труб (2–3 мм) во время сборочных операций. При расчете на прочность высота шва h принимается равной толщине основного металла, т. е. h = S, и шов считается равнопрочным основному металлу. Это достигается, когда основания свариваемых кромок труб лежат в одной плоскости РР (рис. 48). Если имеется отклонение (при заданном зазоре b) от номинального диаметра Dном одной из сопрягаемых труб, то происходит смещение кромок. Смещение кромок по линии аа приводит к уменьшению расчетной высоты шва h и угла α (при сравнении отрезков ое и ос или углов α и α'). Поэтому возникает необходимость свести возможные отклонения к минимально допустимым. Несовпадение кромок труб при сварке плавлением, кроме уменьшения расчетной высоты шва, ухудшает условия равномерного прогрева и сплавления корня шва. В местах, где одна из кромок смещена по линии аа на значительную величину, часто наблюдаются несплавления и прожоги. Причинами несовпадения кромок при сборке стыков могут являться разнотолщинность и эллиптичность цельнотянутых труб, значительные отклонения по длине окружности сварных труб, местные вмятины, связанные с транспортировкой и разгрузкой, а также выхваты, вызванные неправильной обработкой концов труб. Эти отклонения вызывают необходимость дополнительной подгонки концов труб при сборке в трассовых условиях.

Процесс сборки труб под сварку предусматривает  технологическую операцию – центровку, в результате которой две сопрягаемые  трубы становятся соосными. При сборке прямолинейных труб в секции необходимо, чтобы их оси совпадали. Для сборки криволинейных труб требуется совпадение касательных (АО и ОС) к осям в точке О, являющейся местом пересечения осей труб с плоскостью N, проходящей по середине зазора b собираемого стыка (рис. 49). Для обеспечения совпадения мнимых осей сопрягаемых труб используют их поверхности (а также линии и точки), которые обеспечивают требуемую ориентацию труб при центровке. Эти поверхности (линии и точки) называют базирующими элементами, а придаваемое трубе положение, определяемое базирующими элементами, называют ее базированием. При центровке труб в качестве базирующих элементов используют следующие поверхности и линии:

Информация о работе Анализ и совершенствование технологии ручной дуговой сварки неповоротных кольцевых стыков магистральных трубопроводов