Автор работы: Пользователь скрыл имя, 03 Мая 2012 в 21:22, дипломная работа
Исходные данные к проекту (требуемые параметры результатов проектирования (исследования) и исходные данные объекта): на основе компании ОАО «Казахтелеком» спроектировать сеть беспроводного доступа Wi-Fi стандарт 802.11n в общежитии № 2 Алматинского Института Энергетики и Связи. Для предоставления современных услуг связи: высокоскоростной доступ в Интернет, компьютерная сеть. Перечень подлежащих разработке в дипломном проекте вопросов или краткое содержание дипломного проекта:
1 Общие понятия беспроводного доступа Wi-Fi (характеристики, стандарты).
2 Выбор оборудования системы беспроводного доступа.
3 Расчет зоны покрытия точек доступа
4 Охрана безопасности и жизнедеятельности
5 Экономическая эффективность проекта
По формуле (3.1) эффективная изотропная излучаемая мощность составляет:
EIRP = 18 – 6 + 24 = 36 дБм
Эта методика позволяет определить теоретическую дальность работы беспроводного канала связи, построенного на оборудовании D-LINK. Следует сразу отметить, что расстояние между антеннами, получаемое по формуле – максимально достижимое теоретически, а так как на беспроводную связи влияет множество факторов, получить такую дальность работы, особенно в черте города, увы, практически невозможно.
Для определения дальности связи необходимо рассчитать суммарное усиление тракта и по графику определить соответствующую этому значению дальность. Усиление тракта в дБ определяется по формуле:
(3.2)
где
– мощность передатчика;
– коэффициент усиления передающей антенны;
– коэффициент усиления приемной антенны;
– реальная чувствительность приемника;
По графику, приведённому на рисунке 3.1, находим необходимую дальность работы беспроводного канала связи.
Рисунок 3.1 – График для определения дальности работы беспроводного канала связи
По графику (кривая для 2.4 GHz) определяем соответствующую этому значению дальность. Получаем дальность равную ~300 метрам.
Без вывода приведём формулу для расчёта дальности. Она берётся из инженерной формулы расчёта потерь в свободном пространстве:
(3.3)
где
FSL (free space loss) – потери в свободном пространстве (дБ);
F – центральная частота канала на котором работает система связи (МГц);
D – расстояние между двумя точками (км).
FSL определяется суммарным усилением системы. Оно считается следующим образом:
Суммарное усиление = Мощность передатчика (дБмВт) + | Чувствительность приёмника (–дБмВт)(по модулю) | + Коэф. Уисления антенны передатчика + Коэф усиления антенны приёмника – затухание в антенно-фидерном тракте передатчика – затухание в антенно-фидерном тракте приёмника – SOM
Для каждой скорости приёмник имеет определённую чувствительность. Для небольших скоростей (например, 1-2 мегабита) чувствительность наивысшая: от –90 дБмВт до –94 дБмВт. Для высоких скоростей, чувствительность намного меньше.
В зависимости от марки радио-модулей максимальная чувствительность может немного варьироваться. Ясно, что для разных скоростей максимальная дальность будет разной.
SOM (System Operating Margin) – запас в энергетике радиосвязи (дБ). Учитывает возможные факторы отрицательно влияющие на дальность связи, такие как:
температурный дрейф чувствительности приемника и выходной мощности передатчика;
всевозможные погодные аномалии: туман, снег, дождь;
рассогласование антенны, приёмника, передатчика с антенно-фидерным трактом.
Параметр SOM берётся равным 15 дБ. Считается, что 15-ти децибельный запас по усилению достаточен для инженерного расчета.
В итоге получим формулу дальность связи:
.
D=0.25km = 250м
4 ЗАЩИТА БЕСПРОВОДНЫХ СЕТЕЙ
По мере увеличения количества поставщиков и производителей, отдающих предпочтение беспроводным технологиям, последние все чаще преподносятся как средство, способное спасти современный компьютерный мир от опутывающих его проводов.
Разработчики беспроводного доступа не заметили подводных рифов в собственных водах, в результате чего первые робкие попытки беспроводных технологий завоевать мир провалились. Препятствием для широкого распространения беспроводных технологий, то есть тем самым «рифом», стал недостаточно высокий уровень безопасности.
Поскольку система беспроводной связи, построенная на базе статически распределяемых среди всех абонентов ключей шифрования WEP и аутентификации по MAC-адресам, не обеспечивает надлежащей защиты, многие производители сами начали улучшать методы защиты. Первой попыткой стало увеличение длины ключа шифрования — с 40 до 128 и даже до 256 бит. По такому пути пошли компании D-Link, U.S. Robotics и ряд других. Однако применение такого расширения, получившего название WEP2, приводило к несовместимости с уже имеющимся оборудованием других производителей. К тому же использование ключей большой длины только увеличивало объем работы, осуществляемой злоумышленниками, и не более того.
Понимая, что низкая безопасность будет препятствовать активному использованию беспроводных технологий, производители обратили внимание на спецификацию 802.1x, предназначенную для предоставления единого для всех сетевых технологий в рамках группы стандартов 802 сетевого механизма контроля доступа. Этот стандарт, называемый также динамическим WEP, применим и к беспроводным технологиям, что достигается благодаря использованию протокола EAP (Extensible Authentication Protocol). Данный протокол позволяет устранить угрозу создания ложных точек доступа, повысить криптографическую стойкость трафика к взлому и облегчить распределение аутентификационной информации по абонентам сети беспроводного доступа. Со временем протокол EAP видоизменялся, и сейчас существует несколько его разновидностей:
• Cisco Wireless EAP (LEAP);
• Protected EAP (PEAP);
• EAP-Transport Layer Security (EAP-TLS);
• EAP-Tunneled (EAP-TTLS);
• EAP-Subscriber Identity Module (EAP-SIM).
Надо заметить, что компания одной из первых реализовала проект этого стандарта в своем оборудовании Aironet. Клиент 802.1x уже встроен в операционную систему Windows XP; для других клиентов необходимо дополнительно устанавливать соответствующее программное обеспечение.
Новизна стандарта 802.1x вызывает при его применении ряд сложностей, первой по значимости из которых является возможная нестыковка между собой оборудования различных производителей, а второй — отсутствие клиентов 802.1x для некоторых типов устройств доступа. Но эти проблемы постепенно решаются, и в ближайшее время стандарт будет признан и станет повсеместно применяться для аутентификации беспроводного доступа. Остается, правда, человеческий фактор, который также мешает повышению защищенности любой технологии, и не только беспроводной. Например, по данным исследования TNS Intersearch, проводившегося по заказу Microsoft, из всех компаний, развернувших беспроводные точки доступа у себя в сети, только 42% задействовали механизмы аутентификации — никакие технические решения в такой ситуации не помогут.
Однако слабость базовых механизмов защиты не ограничивается одной лишь аутентификацией. Остаются открытыми вопросы дешифрования трафика, управления ключами, подмены сообщений и т.п., которые также активно решаются мировым сообществом. Например, последняя из названных проблем устраняется протоколом MIC (Message Integrity Check), позволяющим защитить передаваемые пакеты от изменения.
Слабая криптография WEP постепенно заменяется другими алгоритмами. Некоторые производители предлагают использовать DES или TripleDES в качестве альтернативы RC4. Интересное решение представила компания Fortress, которая разработала протокол канального уровня wLLS (wireless Link Layer Security), базирующийся:
• на алгоритме обмена ключами Диффи—Хеллмана;
• 128-разрядном шифровании IDEA (опционально могут использоваться также DES и 3DES);
• динамической смене ключей через каждые два часа;
• использовании двух пар ключей (для шифрования сетевого трафика и шифрования при обмене ключами).
Применение одного и того же ключа шифрования WEP приводило к накапливанию злоумышленником объема данных, достаточного для взлома используемой криптографии. Решением проблемы стала динамическая смена ключей, которую одной из первых реализовала компания Fortress в своем протоколе wLLS. Сменяемые через каждые два часа ключи усложняли работу криптоаналитика.
Второй подход, предложенный в протоколе TKIP (Temporal Key Integrity Protocol), заключается в смене ключей через каждые 10 Кбайт переданных данных. Этот протокол, заменив статический ключ шифрования динамически изменяющимися и распределяемыми по клиентам, позволил увеличить их длину — с 40 до 128 бит. При этом RC4 по-прежнему оставался алгоритмом шифрования.
Многие производители делают ставку на более сложный алгоритм AES (длина ключей шифрования 128, 192 или 256 бит), ставший национальным стандартом шифрования США. Однако его внедрение потребует реализации новых микросхем в оборудовании, что, в свою очередь, скажется на его цене и на стоимости перехода на новую версию.
Новые алгоритмы и протоколы значительно повышали защищенность беспроводных технологий и способствовали их более широкому распространению, однако они плохо интегрировались друг с другом, а оборудование, их использующее, стыковалось только после приложения серьезных усилий. Устранить все эти недостатки позволяет стандарт WPA (Wi-Fi Protected Access), анонсированный альянсом Wi-Fi (бывший WECA) 31 октября 2002 года. Данный стандарт призван унифицировать все технологии безопасности для беспроводных сетей 802.11. В настоящее время в этот стандарт входят:
• аутентификация пользователей при помощи 802.1x и EAP;
• шифрование при помощи TKIP;
• динамическое распределение ключей при помощи 802.1x;
• контроль целостности при помощи MIC (он же Michael).
В этом году стандарт WPA должен преобразоваться в более новую и расширенную спецификацию 802.11i (или WPA2). Именно в WAP2 алгоритм шифрования WEP будет заменен на AES.
Решения предлагаются различными производителями для защиты беспроводных сетей. Программное обеспечение позволяет достичь трех целей:
Найти чужих, то есть провести инвентаризацию беспроводной сети с целью обнаружить любые несанкционированные точки доступа и беспроводных клиентов, которые могут прослушивать трафик и вклиниваться во взаимодействие абонентов;
Проверить своих, то есть проконтролировать качество настройки и порекомендовать способы устранения дыр в санкционировано установленных беспроводных устройствах;
Защитить своих, то есть предотвратить несанкционированный доступ и атаки на узлы беспроводного сегмента сети (рисунок 4.1).
Рисунок 4.1 – Беспроводная сеть
Первую, и самую распространенную, задачу можно решить с помощью достаточно большого количества инструментов — NetStumbler, Wellenreiter, WifiScanner и др., а также с помощью сканеров безопасности беспроводных сетей и ряд систем обнаружения атак.
Пионером среди средств инвентаризации беспроводных устройств является NetStumbler, который запускается под Windows 9x/2000/XP и позволяет не только очень быстро находить все незащищенные беспроводные точки доступа, но и проникать в сети, якобы защищенные с помощью WEP. Аналогичные задачи решают WifiScanner, PrismStumbler и множество других свободно распространяемых продуктов. В этом плане интересна система Wellenreiter, которая также ищет беспроводных клиентов и точки доступа. Однако если подключить к ней GPS-приемник, система приобретает поистине безграничные возможности: вы сможете не только определить все несанкционированно установленные беспроводные устройства, но и узнать их местонахождение с точностью до метра. Еще одной отличительной особенностью этой системы является ее способность работать под управлением карманного компьютера.
В наглядном виде представляет результаты своей работы система Red-Vision от компании red-M, которая не только обнаруживает все точки доступа, но и визуально размещает их на схеме помещения вашей компании. В рекламных проспектах red-M пользователям обещают: «Мы откроем вам глаза на беспроводные технологии!»
Поиск дыр в беспроводных устройствах осуществляют многие утилиты и инструменты, но, как правило, поиск дыр ограничивается попыткой взлома ключей шифрования WEP, и не более того. По такому принципу, например, действуют AirSnort и WEPCrack.
Более интересен специализированный инструментарий, обеспечивающий всесторонний аудит беспроводных устройств. Таких продуктов сегодня немного. Если быть точным, то только один — Wireless Scanner от компании Internet Security Systems, вид интерфейса системы Wireless Scanner представлен на рисунке 4.2
Рисунок 4.2 – Интерфейс системы Wireless Scanner
Эта система, базирующаяся на широко известном и самом первом в мире сетевом сканере безопасности Internet Scanner, проводит инвентаризацию сети и обнаруживает все санкционировано и несанкционированно установленные беспроводные точки доступа и клиенты. После этого проводится всесторонний анализ каждого устройства с целью определения любых слабых мест в системе защиты — недостатков в настройке или ошибок программирования. В базу сигнатур уязвимостей Wireless Scanner входит большое число записей о дырах в решениях ведущих игроков этого рынка — Cisco, Avaya, 3Com, Lucent, Cabletron и т.д. В гораздо меньшем объеме проверку проводит Wireless Security Auditor (WSA) — программный продукт от компании IBM. Пока это только прототип, и трудно сказать, каков будет окончательный результат усилий разработчиков. Как и вышеназванные системы, WSA проводит инвентаризацию сети и анализирует конфигурацию обнаруженных устройств в плане безопасности.
После обнаружения чужих устройств и устранения дыр в своих перед пользователями встает задача обеспечения непрерывной защиты беспроводной сети и своевременного обнаружения атак на ее узлы. Эту задачу решают системы обнаружения вторжений, коих тоже существует достаточно, чтобы задуматься над выбором.. Применительно к беспроводным сетям очень трудно провести грань между сканером, инвентаризирующим сеть, и системой обнаружения атак, так как под обнаружением большинство производителей понимают идентификацию несанкционированных точек доступа. Отличие между ними заключается только в том, что сканеры выполняют эту задачу по команде или через заданные интервалы времени, а системы обнаружения контролируют сеть постоянно.