Автор работы: Пользователь скрыл имя, 03 Мая 2012 в 21:22, дипломная работа
Исходные данные к проекту (требуемые параметры результатов проектирования (исследования) и исходные данные объекта): на основе компании ОАО «Казахтелеком» спроектировать сеть беспроводного доступа Wi-Fi стандарт 802.11n в общежитии № 2 Алматинского Института Энергетики и Связи. Для предоставления современных услуг связи: высокоскоростной доступ в Интернет, компьютерная сеть. Перечень подлежащих разработке в дипломном проекте вопросов или краткое содержание дипломного проекта:
1 Общие понятия беспроводного доступа Wi-Fi (характеристики, стандарты).
2 Выбор оборудования системы беспроводного доступа.
3 Расчет зоны покрытия точек доступа
4 Охрана безопасности и жизнедеятельности
5 Экономическая эффективность проекта
3.2 Расчет зоны действия сигнала
4 ЗАЩИТА БЕСПРОВОДНЫХ СЕТЕЙ
4.1 Защита информации
4.2 WEP и его последователи
4.3 Программное обеспечение
4.4 Инвентаризация беспроводной сети
4.5 Анализ защищенности беспроводных устройств
4.6 Обнаружение атак на беспроводные сети
5 БИЗНЕС ПЛАН
5.1 Общая информация о проекте
5.2 Обоснование выбора и состава оборудования
5.3 Финансовый план
6 БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ
6.1 Анализ условий труда обслуживающего персонала при эксплуатации технического оборудования
6.2 Расчет системы искусственного освещения помещения
6.3 Анализ пожарной безопасности
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
ПРИЛОЖЕНИЕ А
ПРИЛОЖЕНИЕ Б
ПРИЛОЖЕНИЕ E
ВВЕДЕНИЕ
Во всем мире стремительно растет потребность в беспроводных соединениях, особенно в сфере бизнеса и IT технологий. Пользователи с беспроводным доступом к информации всегда и везде могут работать гораздо более производительно и эффективно, чем их коллеги, привязанные к проводным телефонным и компьютерным сетям, так как существует привязанность к определенной инфраструктуре коммуникаций.
На современном этапе развития сетевых технологий, технология беспроводных сетей Wi-Fi является наиболее удобной в условиях требующих мобильность, простоту установки и использования. Wi-Fi (от англ. wireless fidelity - беспроводная связь) - стандарт широкополосной беспроводной связи семейства 802.11 разработанный в 1997г. Как правило, технология Wi-Fi используется для организации беспроводных локальных компьютерных сетей, а также создания так называемых горячих точек высокоскоростного доступа в Интернет.
Беспроводные сети обладают, по сравнению с традиционными проводными сетями, немалыми преимуществами, главным из которых, конечно же, является:
- Простота развёртывания;
- Гибкость архитектуры сети, когда обеспечивается возможность динамического изменения топологии сети при подключении, передвижении и отключении мобильных пользователей без значительных потерь времени;
- Быстрота проектирования и реализации, что критично при жестких требованиях к времени построения сети;
- Так же, беспроводная сеть не нуждается в прокладке кабелей (часто требующей дробления стен).
В то же время беспроводные сети на современном этапе их развития не лишены серьёзных недостатков. Прежде всего, это зависимость скорости соединения и радиуса действия от наличия преград и от расстояния между приёмником и передатчиком. Один из способов увеличения радиуса действия беспроводной сети заключается в создании распределённой сети на основе нескольких точек беспроводного доступа. При создании таких сетей появляется возможность превратить здание в единую беспроводную зону и увеличить скорость соединения вне зависимости от количества стен (преград). Аналогично решается и проблема масштабируемости сети, а использование внешних направленных антенн позволяет эффективно решать проблему препятствий, ограничивающих сигнал.
Целью данной работы является проектирование сети беспроводного доступа в общежитии № 2 Алматинского Института Энергетики и Связи, с целью повышения уровня информатизации, предоставления современных услуг связи: высокоскоростной доступ в Интернет, компьютерная сеть, на базе технологии Wi-Fi.
1 ОБЗОР ТЕХНОЛОГИИ БЕСПРВОДНОГО ДОСТУПА Wi-FI
На заре развития радиотехники термин "беспроводный" (wireless) использовался для обозначения радиосвязи в широком смысле этого слова, т. е. буквально во всех случаях, когда передача информации осуществлялась без проводов. Позже это толкование практически вышло из обращения, и "беспроводный" стало употребляться как эквивалент термину "радио" (radio) или "радиочастота" (RF - radio frequency). Сейчас оба понятия считаются взаимозаменяемыми в том случае, если речь идет о диапазоне частот от 3 кГц до 300 ГГц. Тем не менее термин "радио" чаще используется для описания уже давно существующих технологий (радиовещание, спутниковая связь, радиолокация, радиотелефонная связь и т. д.). А термин "беспроводный" в наши дни принято относить к новым технологиям радиосвязи, таким, как микросотовая и сотовая телефония, пейджинг, абонентский доступ и т. п.
Различают три типа беспроводных сетей (рис. 1.1): WWAN (Wireless Wide Area Network), WLAN (Wireless Local Area Network) и WPAN (Wireless Personal Area Network)
Рисунок 1.1 - Радиус действия персональных, локальных и глобальных беспроводных сетей
При построении сетей WLAN и WPAN, а также систем широкополосного беспроводного доступа (BWA - Broadband Wireless Access) применяются сходные технологии. Ключевое различие между ними (рис. 1.2) - диапазон рабочих частот и характеристики радиоинтерфейса. Сети WLAN и WPAN работают в нелицензионных диапазонах частот 2,4 и 5 ГГц, т. е. при их развертывании не требуется частотного планирования и координации с другими радиосетями, работающими в том же диапазоне. Сети BWA (Broadband Wireless Access) используют как лицензионные, так и нелицензионные диапазоны (от 2 до 66 ГГц).
Рисунок 1.2 - Классификация беспроводных технологий
Беспроводные локальные сети WLAN.
Основные назначение беспроводных локальных сетей (WLAN) – организация доступа к информационным ресурсам внутри здания. Вторая по значимости сфера применения – это организация общественных коммерческих точек доступа (hot spots) в людных местах – гостиницах, аэропортах, кафе, а также организация временных сетей на период проведения мероприятий (выставок, семинаров).
Беспроводные локальные сети создаются на основе семейства стандартов IEEE 802.11. Эти сети известны также как Wi-Fi (Wireless Fidelity), и хотя сам термин Wi-Fi, в стандартах явным образом не прописан, бренд Wi-Fi получил в мире самое широкое распространение.
В 1990 г. Комитет по стандартам IEEE 802 (Institute of Electrical and Electronic Engineers). сформировал рабочую группу по стандартам для беспроводных локальных сетей 802.11. Это группа занялась разработкой всеобщего стандарта для радиооборудования и сетей, работающих на частоте 2.4 ГГц со скоростями 1 и 2 Мбит/с. Работа по созданию стандарта были завершены через семь лет, и в июне 1997 г. была ратифицирована первая спецификация 802.11.
Стандарт IEEE 802.11 стал первым стандартом для продуктов WLAN от независимой международной организации. Однако к моменту выхода стандарта в свет первоначально заложенная в нем скорость передачи данных оказалась недостаточной. Это послужило причиной последующих доработок, поэтому сегодня можно говорить о группе стандартов.
В настоящее время широко используется преимущественно три стандарта группы IEEE 802.11 (представлены в таблице 1.1)
Таблица 1.1 - Основные характеристики стандартов группы IEEE 802.11
Стандарт | 802.11g | 802.11a | 802.11n |
Частотный диапазон, ГГц | 2,4-2,483 | 5,15-5,25 | 2,4 или 5,0 |
Метод передачи | DSSS,OFDM | DSSS,OFDM | MIMO |
Скорость, Мбит/с | 1-54 | 6-54 | 6-300 |
Совместимость | 802.11 b/n | 802.11 n | 802.11 a/b/g |
Метод модуляции | BPSK, QPSK OFDM | BPSK, QPSK OFDM | BPSK, 64-QAM |
Дальность связи в помещении, м | 20-50 | 10-20 | 50-100 |
Дальность связи вне помещения, м | 250 | 150 | 500 |
1.3.1 Стандарт IEEE 802.11g
Стандарт IEEE 802.11g, принятый в 2003 году, является логическим развитием стандарта 802.11b и предполагает передачу данных в том же частотном диапазоне, но с более высокими скоростями. Кроме того, стандарт 802.11g полностью совместим с 802.11b, то есть любое устройство 802.11g должно поддерживать работу с устройствами 802.11b. Максимальная скорость передачи данных в стандарте 802.11g составляет 54 Мбит/с.При разработке стандарта 802.11g рассматривались две конкурирующие технологии: метод ортогонального частотного разделения OFDM, заимствованный из стандарта 802.11a и предложенный к рассмотрению компанией Intersil, и метод двоичного пакетного сверточного кодирования PBCC, предложенный компанией Texas Instruments. В результате стандарт 802.11g содержит компромиссное решение: в качестве базовых применяются технологии OFDM и CCK, а опционально предусмотрено использование технологии PBCC.
Идея сверточного кодирования (Packet Binary Convolutional Coding, PBCC) заключается в следующем. Входящая последовательность информационных бит преобразуется в сверточном кодере таким образом, чтобы каждому входному биту соответствовало более одного выходного. То есть сверточный кодер добавляет определенную избыточную информацию к исходной последовательности. Если, к примеру, каждому входному биту соответствуют два выходных, то говорят о сверточном кодировании со скоростью равной 1/2. Если же каждым двум входным битам соответствуют три выходных, то скорость сверточного кодирования будет составлять уже 2/3.
Любой сверточный кодер строится на основе нескольких последовательно связанных запоминающих ячеек и логических элементов XOR. Количество запоминающих ячеек определяет количество возможных состояний кодера. Если, к примеру, в сверточном кодере используется шесть запоминающих ячеек, то в кодере хранится информация о шести предыдущих состояниях сигнала, а с учетом значения входящего бита получим, что в таком кодере применяется семь бит входной последовательности. Такой сверточный кодер называется кодером на семь состояний.
Выходные биты, формируемые в сверточном кодере, определяются операциями XOR между значениями входного бита и битами, хранимыми в запоминающих ячейках, то есть значение каждого формируемого выходного бита зависит не только от входящего информационного бита, но и от нескольких предыдущих битов.
Главным достоинством сверточных кодеров является помехоустойчивость формируемой ими последовательности. Дело в том, что при избыточности кодирования даже в случае возникновения ошибок приема исходная последовательность бит может быть безошибочно восстановлена. Для восстановления исходной последовательности бит на стороне приемника применяется декодер Витерби.
Дибит, формируемый в сверточном кодере, используется в дальнейшем в качестве передаваемого символа, но предварительно он подвергается фазовой модуляции. Причем в зависимости от скорости передачи возможна двоичная, квадратурная или даже восьмипозиционная фазовая модуляция.
В отличие от технологий DSSS (коды Баркера, ССК-последовательности), в технологии сверточного кодирования не применяется технология уширения спектра за счет использования шумоподобных последовательностей, однако уширение спектра до стандартных 22 МГц предусмотрено и в данном случае. Для этого применяют вариации возможных сигнальных созвездий QPSK и BPSK.
Рассмотренный метод PBCC-кодирования опционально используется в протоколе 802.11b на скоростях 5,5 и 11 Мбит/с. Аналогично в протоколе 802.11g для скоростей передачи 5,5 и 11 Мбит/с этот способ тоже применяется опционально. Вообще, вследствие совместимости протоколов 802.11b и 802.11g технологии кодирования и скорости, предусмотренные протоколом 802.11b, поддерживаются и в протоколе 802.11g. В этом плане до скорости 11 Мбит/с протоколы 802.11b и 802.11g совпадают друг с другом, за исключением того, что в протоколе 802.11g предусмотрены такие скорости, которых нет в протоколе 802.11b.
Опционально в протоколе 802.11g технология PBCC может использоваться при скоростях передачи 22 и 33 Мбит/с.
Для скорости 22 Мбит/с по сравнению с уже рассмотренной нами схемой PBCC передача данных имеет две особенности. Прежде всего, применяется 8-позиционная фазовая модуляция (8-PSK), то есть фаза сигнала может принимать восемь различных значений, что позволяет в одном символе кодировать уже три бита. Кроме того, в схему, за исключением сверточного кодера, добавлен пунктурный кодер (Puncture). Смысл такого решения довольно прост: избыточность сверточного кодера, равная 2 (на каждый входной бит приходится два выходных), достаточно высока и при определенных условиях помеховой обстановки является излишней, поэтому можно уменьшить избыточность, чтобы, к примеру, каждым двум входным битам соответствовали три выходных. Для этого можно, конечно, разработать соответствующий сверточный кодер, но лучше добавить в схему специальный пунктурный кодер, который будет просто уничтожать лишние биты. Допустим, пунктурный кодер удаляет один бит из каждых четырех входных бит. Тогда каждым четырем входящим бит будут соответствовать три выходящих. Скорость такого кодера составляет 4/3. Если же такой кодер используется в паре со сверточным кодером со скоростью 1/2, то общая скорость кодирования составит уже 2/3, то есть каждым двум входным битам будут соответствовать три выходных.
Технология PBCC является опциональной в стандарте IEEE 802.11g, а технология OFDM — обязательной. Для того чтобы понять суть технологии OFDM, рассмотрим более подробно многолучевую интерференцию, возникающую при распространении сигналов в открытой среде.