Автор работы: Пользователь скрыл имя, 21 Февраля 2012 в 08:15, реферат
Греческая форма атомизма плодотворно повлияла на развитие науки. Наиболее полно и в ясном изложении дошли до нас изустные и письменные работы древних греков. Древние греки одними из первых стали изучать природу с помощью методов (примитивных в нашем понимании), сформулированных в их научных диспутах, лекциях. В Древней Греции человеческий разум осознавал свою силу, и именно тогда начали появляться систематические научные исследования.
Атомистика философов Древней Греции и Рима
Атомистика в период до XVII в
Физика в XVIII и XIX вв
Атомистика конца XIX – начала XX в
Атомистика первой половины XX в
Атомистика в предвоенные годы
Атомистика от послевоенных лет до наших дней
Заключение
Список литературы
Научная деятельность Галилея, его огромной важности открытия, научная смелость имели решающее значение для утверждения гелиоцентрической системы мира.
Научные открытия и наследие великого английского ученого Исаака Ньютона (1643-1727) относятся к трем основным областям: математике, механике и астрономии. Ньютон вошел в историю как подлинный корифей науки, его основные труды и сейчас не утратили своего значения, хотя время и вносит коррективы в некоторые их разделы. Первый ощутимый удар по учению Ньютона нанесла теория электромагнитного поля Дж. Максвелла (1831-1879), основателя классической электродинамики и статистической физики. Утверждение современной физики было подготовлено открытием рентгеновских лучей, радиоактивности элементов и их взаимных превращений, теорией относительности Эйнштейна, квантовой теорией и др. И все же это ни в коей мере не умаляет огромного значения для науки классических работ И. Ньютона.
Физика в XVIII и XIX вв.
В XVIII и XIX вв. классическая физика вступила в период, когда многие ее положения стали подвергаться серьезному переосмыслению. В 1746 г. М. В. Ломоносов (1711-1765) писал: «Мы живем в такое время, в которое науки после своего возобновления в Европе возрастают и к совершенству приходят».
Михаил Ломоносов –
первый русский профессор химии,
автор первого русского курса
физической химии. В области физики
он оставил нам ряд важных работ
по кинетической теории газов, теории
теплоты, оптике и др. Рассматривая
основу химических явлений» Ломоносов
на базе атомно-молекулярных представлений
развивал учение о «нечувствительных»
(т. е. неощутимых) частицах материи
– «корпускулах» (молекулах). Он полагал,
что всем свойствам вещества можно
дать исчерпывающее объяснение с
помощью представления о
В химических работах Ломоносова важную роль играет атомистика, она – краеугольный камень его научного мышления. Ломоносов дал свою формулировку принципа сохранения материи и движения: «...все перемены, в натуре случающиеся, такого суть состояния, что сколько чего у одного тела отнимается, столько присовокупится к другому... Сей всеобщий естественный закон простирается и в самые правила движения, ибо тело, движущее своею силою другое, столько же оныя у себя теряет, сколько сообщает другому, которое от него движение получает...»
Введение понятия «корпускулы» наряду с понятием «элемента» (атома) означало признание того, что определенная совокупность атомов создает новое единство, действующее как целое, некий новый качественный «узел». Это была перспективная идея, ибо только через естествознание человечество могло прийти к идее развития, образования сложных форм вещества из соединения простых.
Самый характер соединения Ломоносов мыслил не как простое сложение составных элементов. Он подчеркивал, что природа новых образований зависит не только от того, какие элементы входят в эти образования (корпускулы), но и от того, каков характер связи между элементами. Ломоносов, приняв гипотезу о вращательном движении молекул-корпускул, вывел ряд следствий:
1. Частицы-корпускулы имеют шарообразную форму.
2. При более быстром
вращении частиц теплота
3. Горячее тело должно
охлаждаться при
Ломоносов критиковал теорию теплорода (или флогистона – не имеющей массы невесомой жидкости), которую он считал возвратом к представлениям древних об элементарном огне.
По мысли Ломоносова, упругость
газов (воздуха) является свойством
коллектива атомов. Сами атомы «должны
быть телесными и иметь продолжение»
Воззрения на теплоту как
форму движения мельчайших «нечувствительных»
частиц высказывались еще в XVI в.
Бэконом, Декартом, Ньютоном, Гуком. Эту
же идею разрабатывал и М. Ломоносов,
однако он оставался почти в одиночестве,
так как многие его современники
были сторонниками концепции «теплорода».
И только позднее Дэви и затем
Юнг и Мор доказали, что теплота
является формой движения и что следует
рассматривать теплоту как
Атомно-молекулярное учение
о материи лежало в основе многих
физических и химических исследований
на всем протяжении истории науки. Со
времени Бойля оно стало
Итальянский ученый Э. Торричелли
(1608-1647) доказал существование
Вместе с Г. Галилеем и С. Стевиным Блез Паскаль считается основоположником классической гидростатики. Он указал на общность основных законов равновесия жидкостей и газов. В 1703 г. немецкий ученый Г. Шталь (1659-1734) сформулировал теорию, точнее, гипотезу о природе горючести в веществах.
Английский ученый Р. Бойль
(1627-1691) ввел в химию атомистику, это
дало основание Ф. Энгельсу сказать
о работах Бойля: «Бойль делает из
химии науку». Голландец X. Гюйгенс (1629-1695)
вошел в историю науки как
создатель подтвержденного
Наука о тепле потребовала точных температурных измерений. Появились термометры с постоянными точками отсчета: Фаренгейта, Делиля, Ломоносова, Реомюра, Цельсия.
А. Лавуазье (1743-1794) разработал
в 1780 г. кислородную теорию, выявил сложный
состав воздуха. Объяснил горение, тем
самым доказав
Работавший в Петербургской
академии наук Л. Эйлер (1707-1783) установил
закон сохранения момента количества
движения, развил волновую теорию света,
определил уравнения
Американский ученый Б. Франклин (1706-1790) разработал теорию положительного и отрицательного электричества, доказал электрическую природу молнии.
Английский физик Г. Кавендиш (1731-1810) и независимо от него французский физик Ш. Кулон (1736-1806) открыли закон электрических взаимодействий.
Итальянский ученый А. Вольта
(1745-1827) сконструировал первый источник
постоянного тока («вольтов столб»)
и установил связь между
Начало практическим исследованиям электромагнетизма положили работы датчанина X. Эрстеда, француза А. Ампера, русских ученых Д. М. Велланского и Э. Ленца, англичанина М. Фарадея, немецкого физика Г. Ома и др.
Крупнейший немецкий ученый Г. Гельмгольц (1821-1894) распространил закон сохранения энергии с механических и тепловых процессов на явления электрические, магнитные и оптические. Им был установлен ряд законов, касающихся газов, заложены основы кинетической теории газов, термодинамики, открыты инфракрасные и ультрафиолетовые лучи.
М. Фарадей (1791-1867) - английский физик, химик и физико-химик, основоположник учения об электромагнитном поле, электромагнитной индукции – открыл количественные законы электролиза.
В 1803 г. английский физик и химик Дж. Дальтон (1766-1844) опубликовал основополагающие работы по химической атомистике, вывел закон кратных отношений. Дальтон ввел в науку, в частности в химию, понятие атомного веса (атомной массы), приняв за единицу вес водорода. По Дальтону, атом - мельчайшая частица химического элемента, отличающаяся от атомов других элементов своей массой. Он открыл явление диффузии газов (кстати, явление, которым примерно через сто лет воспользовались для получения высокообогащенного урана при создании ядерных бомб).
В XVII–XIX вв. атомы считались абсолютно неделимыми и неизменными частицами материи. Атомистика в значительной мере носила все еще абстрактный характер. В XIX в. большой вклад в разработку научной базы атомистики внесли такие ученые, как Максвелл, Клаузиус, Больцман, Гиббс и др.
В недрах химической науки родилась гипотеза о строении всех атомов из атомов водорода. Именно химико-физики ближе всех подошли к пониманию физического смысла идей атомистики. Они постепенно приближались к выяснению природы атомизма, а последующие поколения ученых – к пониманию действительного строения атома и его ядра.
Предыстория познания атомного ядра начинается в 1869 г. с гениального открытия Д. И. Менделеевым периодического закона химических элементов. Д. И. Менделеев (1834-1907) был первым, кто попытался классифицировать все элементы, и именно ему мы обязаны нынешним видом Периодической системы. Пытаясь охватить все элементы, он вынужден был заключить, что некоторые места Периодической системы элементов (теперь носящей его имя) не заполнены. Исходя из положения в таблице и свойств химических элементов, соседствующих с ними в периодах и группах, он предсказал химические свойства трех отсутствовавших тогда элементов. Примерно через 10 лет эти элементы (галлий, скандий и германий) были открыты и заняли свои места в таблице Менделеева.
Периодический закон стал
как бы последней инстанцией, выносящей
окончательный приговор соотношению
между химическим эквивалентом и
атомной массой. Так, первоначально
бериллий считался трехвалентным с
атомной массой 13,5, а индий –
двухвалентным с атомной массой
75,2, а благодаря их положению в
таблице были проведены тщательные
проверки и уточненные атомные массы
стали равными 9 и 112,8 соответственно.
Урану сначала приписывали
Периодическая система элементов
стала в конце прошлого века памятником
упорству, труду и аккуратности в
экспериментальной работе. В Периодической
системе Менделеева нашли отражение
сложность структуры атома и
значимость ранее неизвестных основных
характеристик атомного ядра – его
массового числа А и
Никто из естествоиспытателей той эпохи не проник так глубоко в понимание взаимосвязи между атомами и молекулами, как Д. И. Менделеев. В 1894 г., когда еще не была ясна модель не только атома, но и молекулы, Менделеев выдвинул гипотезу о строении атома и молекулы. Положив в основу признание существования атомов и молекул, связи между материей и движением, он высказал мысль, что атомы можно представить себе как бесконечно малую Солнечную систему, находящуюся в непрерывном движении. Неизменность атомов, подчеркивал Менделеев, не дает исследователю никакого основания считать их «неподвижными» и «недеятельными в их внутренней сущности», атомы подвижны.
Менделеев показал, что развитие
науки невозможно, если отказаться
от признания объективной
Спустя почти 30 лет после
появления Периодической
В 1964 г. имя Д. И. Менделеева занесено на Доску почета науки Бриджпортского университета (штат Коннектикут, США) в числе имен величайших ученых мира.
Д. И. Менделеев при жизни был известен во многих странах, получил свыше 150 дипломов и почетных званий от русских и зарубежных академий, ученых обществ и учебных заведений.
Атомистика конца XIX – начала XX в.
Гениальные догадки древних ученых о том. что все вещества состоят из атомов, к концу XIX в. полностью подтвердились. К тому времени также было установлено, что атом как единица любого вещества неделим (само слово «атом» по-гречески означает «неделимый»).
С открытия А. Беккерелем в 1896 г. явления радиоактивности берет свое начало новый раздел физики – ядерная физика. С этого момента, собственно, и начинается непосредственно история исследования атомной энергии.
Немецкий физик В. Рентген (1845-1923) открыл в 1895 г. излучение, названное им Х-лучами (впоследствии они получили название рентгеновских лучей, или рентгеновского излучения). Он создал первые рентгеновские трубки и сделал анализ некоторых свойств открытого им излучения. Это открытие и последующие исследования сыграли важную роль в изучении строения атома, структуры вещества.
Рентгеновское излучение нашло широкое применение в медицине, технике, в различных областях науки.
24 февраля 1896 г. французский
физик А. Беккерель (1852-1908) на
заседании Парижской Академии
наук докладывал: «Фотографическую
пластинку Люмьера обертывают
двумя листами очень плотной
черной бумаги... На верхний лист
бумаги кладут какое-либо