Автор работы: Пользователь скрыл имя, 11 Марта 2012 в 16:23, доклад
Спиртами называются соединения, содержащие одну или несколько гидроксильных групп. По их числу спирты подразделяются на одноатомные, двухатомные, трехатомные и т.д. Длины связей и валентные углы в метиловом спирте приведены ниже.
ОДНОАТОМНЫЕ СПИРТЫ
Спиртами называются соединения, содержащие одну или несколько гидроксильных групп. По их числу спирты подразделяются на одноатомные, двухатомные, трехатомные и т.д. Длины связей и валентные углы в метиловом спирте приведены ниже.
Строение метилового спирта
Валентные углы в 109о и 110о указывают на sp3-гибридизацию атома углерода, две неподеленные пары электронов кислорода расположены на sp3-гибридных орбиталях.
НОМЕНКЛАТУРА
Для спиртов существует несколько способов их названия. В современной номенклатуре ИЮПАК для названия спирта к названию углеводорода добавляют окончание "ол". Самую длинную цепь, содержащую функциональную ОН-группу, нумеруют с того конца, к которому ближе всего находится гидроксильная группа, а заместители обозначаются в префиксе, например:
В некоторых спиртах группу СH2OH удобнее называть гидроксиметил, например:
Иногда спирты называют, пользуясь названием алкильной группы:
В этой номенклатуре положение заместителя в алкильной группе обозначается буквами греческого алфавита.
В другой номенклатуре, называемой карбинольной, простейший спирт CH3OH называется карбинол, остальные - как его производные.
Эта номенклатура удобна для самых простых спиртов, т.к. в ней легко различаются первичные, вторичные и третичные спирты.
ПОЛУЧЕНИЕ ОДНОАТОМНЫХ СПИРТОВ
1.Гидратация алкенов
При взаимодействии алкенов с разбавленными водными растворами кислот основным продуктом оказывается спирт.
Этот метод в лабораторных условиях нашел ограниченную область применения для получения третичных спиртов.
Для получения других спиртов он применим ограниченно, поскольку гидратация алкенов часто сопровождается изомеризацией за счет перегруппировок промежуточно образующихся карбокатионов.
Поэтому в лабораторной практике его вытеснил другой способ, основанный на реакции гидроксимеркурирования-
2. Гидроксимеркурирование-
Эта реакция не сопровождается перегруппировками и приводит к образованию индивидуальных спиртов. Направление реакции соответствует правилу Марковникова, реакция проводится в мягких условиях с выходами, близкими к количественным.
3. Гидроборирование алкенов с последующим окислением
Гидроборирование алкенов и последующее окисление боранов раствором пероксида водорода в щелочной среде приводит, в конечном итоге, к антимарковниковскому продукту присоединения воды к двойной связи.
4. Восстановление альдегидов и кетонов алюмогидридом лития или боргидридом натрия
LiAlH4 и NaBH4 восстанавливают альдегиды до первичных спиртов, а кетоны до вторичных, причем боргидрид натрия предпочтителен вследствие большей безопасности в обращении: его можно использовать даже в водном и спиртовом растворах. Алюмогидрид лития реагирует с водой и со спиртом со взрывом и разлагается со взрывом при нагревании выше 120о в сухом состоянии.
Алюмогидрид лития при 0-10о восстанавливает ненасыщенные альдегиды и кетоны до аллиловых спиртов, сохраняя двойную углерод-углеродную связь и восстанавливая карбонильную группу.
Та же самая реакция циклогексен-2-она с NaBH4 приводит к смеси циклогексен-2-ола и циклогексанола в соотношении 1,5:1 в результате присоединения гидрид-иона как к карбонильному углероду, так и к углероду при двойной углерод-углеродной связи.
Лучшим реагентом для избирательного восстановления карбонильной группы в a,b-ненасыщенных альдегидах и кетонах, не затрагивающим двойную углерод-углеродную связь, является диизобутилалюминийгидрид (ДИБАЛ-Н).
5. Восстановление сложных эфиров и карбоновых кислот до первичных спиртов
Первичные спирты образуются при восстановлении сложных эфиров и карбоновых кислот алюмогидридом лития в эфире или ТГФ. Особенно удобен в препаративном отношении метод восстановления сложных эфиров алюмогидридом лития. Следует отметить, что боргидрид натрия не восстанавливает сложноэфирную и карбоксильную группы. Это позволяет проводить селективное восстановление карбонильной группы с помощью NaBH4 в присутствии сложноэфирной и карбоксильной групп. Выходы продуктов восстановления редко бывают ниже 80%. Боргидрид лития в отличие от NaBH4 восстанавливает сложные эфиры до ипервичных спиртов.
6. Синтез спиртов из карбонильных соединений с помощью магнийорганических соединений
Эти реакции подробно рассмотрены в методической разработке, посвященной металлоорганическим соединениям. Здесь будут приведены только отдельные примеры.
7. Восстановление эпоксидов (оксиранов) с помощью алюмогидрида лития
Эпоксиды под действием LiAlH4 в эфире или ТГФ превращаются в спирты. Реакция состоит в нуклеофильной атаке гидрид-иона по наименее замещенному или пространственно незатрудненному атому углерода с образованием вторичного или третичного спирта.
Раскрытие эпоксидного кольца в циклогексанах происходит в результате аксиальной атаки гидрид-иона и поэтому в образующемся циклогексаноле атом водорода и ОН-группа находятся в аксиальном положении.
Эпоксидное кольцо раскрывается также под действием диалкилкупратов лития. В качестве примера приведем образование транс-2-метилциклогексанола при взаимодействии циклогексаноксида с диметилкупратом лития.
8. Взаимодействие алкилгалогенидов и алкилтозилатов с супероксидом калия
Один из самых современных методов получения спиртов заключается во взаимодействии алкилгалогенидов и тозилатов с избытком супероксида калия в ДМСО в присутствии 18-краун-6 полиэфира.
В качестве побочных продуктов всегда получаются алкены, выход которых возрастает при синтезе вторичных спиртов. Для примера приведем получение октанола-1 и октанола-2 из 1-иодоктана и 2-иодоктана, соответственно.
Замещение галогена или тозилоксигруппы на гидроксил сопровождается полным обращением конфигурации у асимметрического атома углерода; так из тозилата (S)-октанола-2 был получен R-октанол-2 с оптической чистотой 97-99%.
Метанол в промышленности получают из оксида углерода (II) и водорода (синтез-газ) над сложным катализатором, состоящим из оксидов меди и цинка, нанесенных на Al2O3 в жестких условиях.
III.СВОЙСТВА ОДНОАТОМНЫХ СПИРТОВ
Многие свойства спиртов обусловлены наличием гидроксильной группы. Температура кипения метанола на 150о выше, чем этана, несмотря на то, что их молекулярные массы близки. Этанол имеет температуру кипения на 123о выше, чем пропан и т.д. С другой стороны этанол кипит на 104о выше, чем изомерный ему газообразный диметиловый эфир. Эти особенности спиртов объясняются образованием прочной межмолекулярной водородной связи; этим же объясняется превосходная растворимость низших спиртов в воде, где возникают межмолекулярные водородные связи между молекулами спирта и воды.
1. Спирты как слабые OH-кислоты
Образование межмолекулярной водородной связи в газовой и конденсированной фазе определяет различие в кислотности первичных, вторичных и третичных спиртов.
В водном растворе и конденсированной фазе кислотность уменьшается в ряду:
В таблице 1 приведены величины pKa некоторых спиртов, которые наглядно иллюстрируют уменьшение кислотных свойств при переходе от первичных к третичным спиртам.
Существует два различных объяснения влияния заместителей на кислотные свойства спиртов. Одно из них, наиболее традиционное, основано на индуктивном дейстии заместителей. Атом галогена, находящийся при -углеродном атоме спирта, обладает ярко выраженным -I эффектом. Последний поляризацией связей На1-С, С-С, С-0 приводит к поляризации гидроксильной группы и увеличению эффективного положительного заряда на атоме водорода гидроксильной группы. Поляризация гидроксильной группы способствует более легкой диссоциации с образованием алкоголят-аниона и протона. Поэтому р-хлорэтанол должен проявлять свойства более сильной кислоты, чем этанол, а -фторэтанол должен быть более сильной кислотой, чем р-хлорэтанол, так как фтор обладает более сильным -I эффектом, чем хлор. По этой самой причине 2,2,2-трифторэтанол, содержащий три атома фтора, должен быть гораздо более сильной кислотой, чем монофторэтанол. Данные, представленные в таблице 1, согласуются с такой интерпретацией.
Таблица 1. Кислотность спиртов в водном растворе
ROH | pKa | ROH | pKa |
(CH3)3COH | 18,0 | FCH2CH2OH | 13,9 |
(CH3)2CHOH | 17,1 | CF3CH2OH | 12,4 |
CH3CH2OH | 15,9 | CF3CH2CH2OH | 14,6 |
CH3OH | 15,5 | CF3CH2CH2CH2OH | 15,4 |
HOH | 15,7 | (CF3)3COH | 5,4 |
ClCH2CH2OH | 14,3 |
|
|
Индуктивный эффект имеет тенденцию к затуханию, если атом галогена более удален от гидроксильной группы. Действительно, 3,3,3-трифторпропанол оказывается более слабой кислотой, чем трифторэтанол, а 4,4,4-трифторбутанол практически не отличается по кислотности от незамещенного первичного спирта. Другое объяснение изменения кислотности спиртов никак не связано с индуктивным влиянием заместителей. Это объяснение основывается на стабильности алкоголят-анионов, образующихся при диссоциации спиртов. Анионы 2-фторэтанола и, особенно, 2,2,2-трифторэтанола гораздо более стабильны, чем незамещенный этилат-ион, так как положительный конец диполя связи C+d-F-d расположен ближе к отрицательно заряженному атому кислорода, чем его отрицательный конец. Поэтому электростатические силы притяжения преобладают над отталкиванием двух одноименно заряженных частиц, а это стабилизирует анион F3ССН3СO- по сравнению с анионом СН3СН2СO-
Приведенное объяснение носит название "эффекта поля" и оно не требует привлечения особых, часто умозрительных химических понятий типа нуклеофильного, мезомерного и других эффектов. Алкильные группы, обладающие +I эффектом, дестабилизируют алкоксид-ион и рКа третичного бутилового спирта в воде выше, чем для первичных и вторичных спиртов.
Спирты как слабые ОН-кислоты реагируют со щелочными, щелочноземельными металлами, алюминием, галлием, таллием с образованием ионных или ковалентных алкоголятов.
Алкоголяты могут быть получены при действии на спирты сильных оснований - гидридов или амидов щелочных или щелочноземельных металлов, а также реактивов Гриньяра.
Спирты проявляют свойства не только слабых кислот, но и слабых оснований Льюиса, т.е. они обладают амфипротонными свойствами. Как основания Льюиса спирты образуют донорно-акцепторные комплексы с галогенидами и оксигалогенидами фосфора, серы или с другими кислотами Льюиса. С сильными минеральными кислотами спирты образуют соли алкоксония. На этих свойствах основаны многие важные реакции замещения гидроксильной группы на галоген, дегидратации и этерификации спиртов с помощью органических и минеральных кислот и их производных.
2. Замещение гидроксильной группы на галоген
Замещение гидроксильной группы на галоген относится к числу наиболее важных реакций органического синтеза. Существует большое число методов замены гидроксильной группы на галоген. Они различаются регио- и стереоселективностью, а выходы спиртов коляблются в весьма широких пределах.
А. Получение алкилгалогенидов из спирта и галогеноводородов