Общая характеристика нефти и газа

Автор работы: Пользователь скрыл имя, 31 Января 2013 в 12:21, контрольная работа

Краткое описание

основной целью работы было детальное рассмотрение вопросов, касающихся органической теории. Поскольку, основываясь на теории органического происхождения нефти и газа, советские геологи-нефтяники открыли крупнейшие нефтегазоносные провинции и зоны нефтегазонакопления в различных частях России (например, месторождения нефти Западной Сибири). Эта теория имеет огромное количество сторонников, как в России, так и за рубежом.

Содержание работы

Введение
Общая характеристика нефти и газа
Добыча нефти и газа
Происхождение нефти и газа
Основные физико-химические свойства нефтей
Физические свойства нефтей и нефтепродуктов
Элементарный и изотопный состав нефтей и
природных газов
Групповой химический состав нефтей
Фракционный состав нефтей
Классификация нефтей
Химическая классификация
Технологическая классификация
Химический состав нефтей
Углеводороды нефти и нефтепродуктов
Алканы
Строение, изомерия, структурные формулы
Номенклатура
Физические свойства
Химические свойства и переработка
Алканы нефти
Циклоалканы
Циклоалканы нефти, влияние на свойства
нефтепродуктов
Арены и углеводороды смешанного строения
Номенклатура и изомерия
Физические свойства
Химические свойства и использование
Углеводороды смешанного строения

Содержимое работы - 1 файл

ОСНОВЫ ХИМИИ НЕФТИ И ГАЗА.doc

— 586.50 Кб (Скачать файл)

 

Большой интерес для  выяснения геохимической истории  нефтей представляет изотопный состав нефтей, т.е. соотношение в них изотопов углерода, водорода, серы и азота. По имеющимся данным, отношение масс различных изотопов в нефтях составляет: 12С/13С 91-94, Н/Д (1Н/2Н) 3895-4436, 32S/34S - 22-22,5, 14N/15N - 273-277.

Различные компоненты одной и той же нефти имеют неодинаковый изотопный состав элементов. Низкокипящие фракции характеризуются облегчённым составом углерода. Различие в протонном составе наблюдается и для отдельных классов соединений (например, ароматические углеводороды богаче изотопом 13С, чем парафиновые углеводороды).

 

 

1.3.3. Групповой  химический состав нефтей

 

Из элементного состава следует, что нефть в основном состоит  из углеводородов. Наиболее широко в  нефти представлены углеводороды трёх классов: алканы, циклоалканы и арены.

Присутствуют также углеводороды смешанного строения. Сравнительно жёсткие условия, в  которых в природе находится нефть (температура до 200 0С и более), обусловливает незначительное содержание лишь в некоторых нефтях таких химически активных углеводородов, как алкены и алкины.

Соединения с циклическими и  полициклическими структурами преобладают в нефтях, приуроченным к относительно молодым отложениям (третичным), а алифатические структуры более характерны для нефтей из палеозойских отложений.

Из неуглеводородных компонентов  нефтей известны кислородные, сернистые, азотистые соединения, также смолы  и асфальтены, содерджащие и кислород, и серу, и азот, но с не вполне ясной химической природой. Имеются и некотрые другие элементно – органические соединения, но характер их тоже пока не совсем ясен.

Нефть содержит также и минеральные  вещества.

 

1.3.4. Фракционный  состав нефти

 

Для оценки качества добываемой нефти и выбора методов её дальнейшей переработки большое значение имеет распределение содержащихся в ней углеводородов по температурам кипения. Лабораторные исследования химического состава нефтей начинают с фракционной перегонки: отбирают узкие фракции, выкипающие в пределах двух-трёх, а иногда и одного градуса. В этих фракциях определяют содержание отдельных групп или индивидуальных углеводородов.

При лабораторном техническом  контроле от начала кипения до 300 0С отбирают 10-градусные, а затем 50-градусные фракции.

На промышленных перегонных установках выделяют фракции, выкипающие в более широких температурных интервалах. Такие фракции обычно называют дистиллятами. Перегонку на таких установках вначале проводят при атмосферном давлении, отбирая следующие дистилляты:

- бензиновый (н.к. ÷  170-200 0С);

- лигроиновый (160 ÷  200 0С);

- керосиновый (180 ÷ 270-300 0С);

- газойлевый (270 ÷ 350 0С).

Промежуточные:

- керосино - газойлевый (270 ÷ 300 0С);

- газойле - соляровый  (300 ÷ 350 0С);

- кубовый остаток - мазут.

Из фракций, выкипающих до 350 0С, смешением (компаундированием) составляют так называемые светлые нефтепродукты:

бензины авиационные  и автомобильные; бензины и лигроины - растворители; керосины - реактивное и тракторное топливо; осветительный керосин; газойли - дизельное топливо.

Кубовый остаток (более 350 0С) - мазут, перегоняют в вакууме для предотвращения разложения компонентов, входящих в его состав, получая масляные дистилляты: соляровый, трансформаторный, веретённый, автоловый, цилиндровый и кубовый остаток - гудрон (или полугудрон). Масляные дистилляты идут на приготовление смазочных масел и пластичных смазок.

Из гудрона (полугудрона) получают наиболее вязкие смазочные  масла и битум.

В зависимости от месторождения  нефти имеют отличие по фракционному составу, выражающееся в различном выходе бензиновых, керосиновых и других фракций.

 

1.4. Классификация нефтей

 

Нефти различных месторождений  и даже одного месторождения, но разных горизонтов, отличаются элементным и  углеводородным составом, что определяет и различие в их физических и химических свойствах. Свойства нефтей обуславливают  методы их добычи и эксплуатации месторождений, способы их переработки, вид и качество получаемых из них продуктов. Абсолютно одинаковые нефти не существуют, но имеются такие её виды, которые близки по своей химической природе и свойствам. Это позволило создать классификацию нефтей.

Приняты химическая и  технологическая классификация  нефтей.

 

1.4.1. Химическая классификация

 

В основу этой классификации  положено преимущественное содержание в нефти углеводородов одного или нескольких классов. Класс нефти по групповому химическому составу определяется на во всей пробе нефти, а во фракции, выкипающей до 300 0С. В зависимости от преобладания в этой фракции углеводородов одного класса (выше 50%), нефти делятся на три основных типа: 1) метановые (М); 2) нафтеновые (Н); 3) ароматические (А).

Если во фракции, выкипающей до 300 0С, содержится более 25% углеводородов других классов, то такие нефти относят к нефтям смешанного типа: 1) метано-нафтеновые (МН); 2) нафтено-метановые (НМ); 3) ароматическо-нафтеновые (АН); 4) нафтено-ароматические (НА); 5) метаново-

ароматические (МА); 6) ароматическо-метановые (АМ). Имеются нефти, когда все  три основные класса углеводородов  содержатся в них примерно в одинаковых количествах, это метано-нафтено-ароматические  нефти. Нефти первых трёх типов встречаются редко. Из них чаще других встречаются нафтеновые нефти, чаще ароматические. Большинство нефтей относится к смешанным типам. Нефти типов МА и АМ в природе не обнаружены.

 

1.4.2. Технологическая  классификация

 

Согласно технологической  классификации, принятой в нашей стране, нефти подразделяются на классы - по содержанию серы; типы - в зависимости от потенциального содержания топлив (фракций, выкипающих до 350 0С); группы - по потенциальному содержанию базовых масел; подгруппы - по качеству масел, определяемых индексом вязкости; виды - по содержанию парафина*.

По количеству серы нефти подразделяются на три класса:                               I-малосернистые (содержат не более 0,5% масс. серы); II-сернистые (содержат от 0,51 до 2% масс. серы); III- высокосернистые (выше 2% серы).

 

По выходу светлых фракций, перегоняющихся до 350 0С, нефти делятся на три типа: Т1 - не менее 45%; Т2 -30-44,9%; Т3 - менее 30%.

По содержанию базовых масел  нефти делятся на четыре группы: М1 -не менее 25% в расчёте на нефть; М2 - 15-25% в расчёте на нефть и не менее 45% в расчёте на мазут; М3 - 15-25% в расчёте на нефть и 30-45% в расчёте на мазут; М4 - менее 15% в расчёте на нефть.

По качеству базовых  масел, оцениваемому индексом вязкости, различают две подгруппы (И1, И2).

Если в нефти содержится не более 1,5% парафина, то такую нефть  относят к малопарафиновой (вид  П1); при содержании парафина от 1,5 до 6% - к парафиновой (П2); выше 6% - к высокопарафиновой (П3).

На основе технологической  классификации каждая нефть имеет свой шифр. Так, например, Туймазинская девонская нефть имеет шифр: Т1М3И1П2 - который означает, что это высокосернистая, парафиновая нефть с содержанием светлых фракций свыше 45%, масел -15-25% в расчёте на нефть и имеющих индекс вязкости более 85.

К числу технологических можно отнести классификации, предложенные для более узко направленных характеристик нефтей. Например, классификация нефтей для выбора варианта их подготовки к транспорту.

 

 

 

2. Химический  состав нефти

 

2.1. Углеводороды  нефти и нефтепродуктов

 

Углеводороды – наиболее простые по составу органические соединения. Их молекулы построены из атомов только двух элементов – углерода и водорода. Общая формула CnHm. Они различаются по строению углеродного скелета и характеру связей между атомами углерода (схема 1).

По первому признаку их делят на ациклические (алифатические) углеводороды, молекулы которых построены из открытых углерод – углеродных цепочек, например, гексан и изогексан:

                                                                        СН3


   СН3-СН2-СН2-СН2-СН2-СН3            СН3-СН-СН2-СН2-СН3 ,

гексан                                                                    изогексан

 

и циклические (карбоциклические) углеводороды.

Карбоцикличекие углеводороды, обладающие особыми свойствами («ароматический характер»), получили название ароматических, например:

 

 

Другие карбоциклические углеводороды, например, циклогексан, называются алициклическими:

 

 

По характеру связей между углеродными  атомами углеводороды могут быть насыщенные, или предельные (алканы), и ненасыщенные (непредельные). Последние могут содержать разное количество двойных (алкены, алкадиены, циклоалкены и др.), тройных (алкины, циклоалкины и др.) связей или те и другие одновременно:

 

 

 

 Схема 1. Классификация углеводородов

 

2.2. Алканы

 

2.2.1. Строение, изомерия, структурные  формулы

 

Строение, изомерия. Алканы – алифатические углеводороды, в молекуле которых атомы углерода связаны между собой и с атомами водорода одинарной связью (σ-связь). Осюда и другое их название – предельные, или насыщенные, углеводороды. Родоначальник и простейший представитель алканов – метан СН4. В молекуле метана, как и в молекулах других алканов, атом углерода находится в состоянии sp3- гибридизации.

Общая формула соединений этого ряда СnH2n+2. Каждый последующий его представитель отличается от предыдущего на группу CH2 (метиленовая группа, табл. 2). Такой ряд родственных органических соединений с однотипной структурой, близкими химическими и закономерно изменяющимися физическими свойствами называется гомологическим рядом; члены этого ряда – гомологами.

Гомологический ряд алканов по названию его первого представителя часто называют рядом метана. Три первых соединения этого ряда не имеют изомеров. Начиная с бутана, наблюдается явление изомерии, т.е. существование нескольких соединений с одинаковым качественным и количественным составом, с одинаковой молекулярной массой, но различными физическими и химическими свойствами.

Строение бутана С4Н10 может быть представлено с помощью двух формул:

Такой вид изомерии называют структурной  изомерией (в данном случае – изомерия углеродного скелета). Углеводороды с неразветвлённой углеродной цепью называют углеводородами  «нормального строения (н-бутан). С увеличением числа углеродных атомов в молекуле алкана число изомеров быстро возрастает; так, для углеводорода С5Н12 можно написать формулы трёх изомеров:

Гексан (С6) имеет 5 изомеров; декан (С10) – 75, эйкозан (С20) – 336319.

Приведённые формулы изомеров бутана и пентана называют структурными. Они показывают не только какие атомы и в каком количестве входят в молекулу данного соединения, но и отражают порядок и характер связей между ними. Различают полную, или развёрнутую, структурную формулу:

изооктан

и краткую, или звеньевую:

 

изооктан

В изооктане имеется четыре типа углеродных атомов: атомы 1,5,6,7,8 связаны  только с одним углеродным атомом – такие атомы углерода называют первичными, атом 3 с двумя – вторичный атом, атом 4 с тремя – третичный углеродный атом. Углеродный атом 2 называется четвертичным. Соответственно первичными, вторичными и третичными называются связанные с ними атомы водорода.

 

2.2.2. Номенклатура

 

Существует несколько способов наименования органических соединений: тривиальные (исторические) названия, рациональная и систематические номенклатуры.

Тривиальные названия обычно связаны  с источниками, первыми способами  получения веществ, именами учёных или являются случайными. Они не говорят о структуре молекулы и в большинстве случаев возникли в начальный период развития химии.

Названия органических соединений по рациональной и систематической номенклатурам указывают не только вид и число атомов, входящих в его состав, но и дают представление о структуре молекулы.

Наиболее удобной, дающей возможность  назвать любое соединение, является систематическая  номенклатура органических соединений, использующая систему правил, разработанную комиссией по номенклатуре органических соединений при Международном союзе Чистой и Прикладной химии – International Union of Pure and Applied Chemistry – сокращённо IUPAC (ИЮПАК).

Первые четыре представителя алканов  имеют случайные названия: метан, этан, пропан, бутан. По существу тривиальными можно считать и названия следующих  алканов, хотя они и являются производными греческих числительных, соответствующих числу углеродных атомов в молекуле алкана [за исключением нонана и ундекана, корни названия которых латинские (табл. 2)], общим для всех гомологов является окончание «ан». Эти названия не дают представления о строении алканов (нормальная, разветвлённая цепь и т.д.), и поэтому однозначно могут быть использованы только для наименования алканов нормального строения.

Информация о работе Общая характеристика нефти и газа