Хроматография

Автор работы: Пользователь скрыл имя, 19 Декабря 2011 в 23:48, доклад

Краткое описание

Бурное развитие жидкостной хроматографии в последние 10 лет обусловлено, главным образом, интенсивной разработкой теоретических основ и практическим использованием ее высокоэффективного варианта, а также созданием и промышленным выпуском необходимых сорбентов и аппаратуры.

Содержимое работы - 1 файл

Введение.docx

— 41.83 Кб (Скачать файл)

Успешное применение сорбентов последнего типа для ВЭЖХ способствовало росту их производства самыми разными производителями. Каждая фирма производила такие сорбенты, как правило, на основе своего вида силикагеля и по своей технологии, которая обычно составляет «ноу-хау» производства. В результате большое количество сорбентов, называющихся химически совершенно одинаково (например, силикагель с привитым октадецилсиланом), имеют очень сильно различающиеся хро-матографические характеристики. Это связано с тем, что силикагель может иметь поры шире или уже, разную поверхность, пористость, его поверхность до прививки может гидроксилиро-ваться или нет, прививаться могут моно-, ди- или трихлорсила-ны, условия прививки могут давать мономерный, полимерный или смешанный слой фазы, используются разные методы удаления остатков реагентов, может использоваться или не использоваться дополнительная дезактивация силанольных и других активных групп.

Сложность технологии прививки реагентов и подготовки сырья и материалов, ее многостадийность приводят к тому, что даже полученные по одной технологии ка одной фирме-производителе партии сорбентов могут иметь несколько разные хрома-тографические характеристики. Особенно это касается тех случаев, когда такие сорбенты используют для анализа многокомпонентных смесей, содержащих вещества,    заметно    различаю щиеся по количеству и положению функциональных групп, по* роду функциональности [9, 10].

Учитывая вышеуказанное, всегда следует стремиться к тому* чтобы при использовании описанной в литературе методики анализа применять именно тот самый сорбент и те же условия работы. В этом случае вероятность того, что работу не удастся воспроизвести, является минимальной. Если же такой возможности нет, а берется сорбент другой фирмы с аналогичной привитой фазой, нужно быть готовым к тому, что потребуется длительная работа по переделке методики. При этом существует вероятность (и ее следует учитывать), что на этом сорбенте даже и после длительной разработки можно не добиться требуемого разделения. Наличие в литературе многих описанных методик разделения на давно производимых старых сорбентах стимулирует их дальнейшее производство и применение по этой причине. Однако в тех случаях, когда приходится переходить к разработке оригинальных методик, особенно применительно к веществам, склонным к разложению, хемосорб-ции, перегруппировкам, целесообразно начинать работу на сорбентах, разработанных в последнее время и выпускаемых по> новым, улучшенным вариантам технологии. Новые сорбенты имеют более однородный фракционный состав, более однородное и полное покрытие поверхности привитой фазой, более совершенные окончательные стадии обработки сорбентов.  

2.3. ИОНООБМЕННАЯ ХРОМАТОГРАФИЯ  

В ионообменной хроматографии разделение компонентов  смеси достигается за счет обратимого взаимодействия ионизирующихся веществ с ионными группами сорбента. Сохранение электронейтральности сорбента обеспечивается наличием способных к ионному обмену противоионов, расположенных в непосредственной близости к поверхности. Ион введенного образца, взаимодействуя с фиксированным зарядом сорбента, обменивается с противоионом. Вещества, имеющие разное сродство ' к фиксированным зарядам, разделяются на анионитах или на катеонитах. Аниониты имеют на поверхности положительно заряженные группы и сорбируют из подвижной фазы анионы. Ка-тиониты соответственно содержат группы с -отрицательным зарядом, взаимодействующие с катионами. 

В качестве подвижной  фазы используют водные растворы ' солей  кислот, оснований и растворители типа жидкого аммиака, т. е. системы растворителей, имеющих высокое значение диэлектрической проницаемости е и большую тенденцию ионизировать соединения. Обычно работают с буферными растворами, позволяющими регулировать значение рН.

При хроматографичеоком разделении ионы анализируемого вещества конкурируют с ионами, содержащимися  в элюенте, стремясь вступить во взаимодействие с противоположно заряженными группами сорбента. Отсюда следует, что ионообменную хроматографию можно применять для разделения любых соединений, которые могут быть каким-либо образом  ионизированы. Можно провести анализ даже нейтральных молекул Сахаров в виде их комплексов с борат-ионом:

Сахар + ВО32- = Сахар -ВО32-.

Ионообменная  хроматография незаменима при разделении высокополярных веществ, которые без перевода в производные не могут быть проанализированы методом ГЖХ. К таким соединениям относятся аминокислоты, пептиды, сахара.

Ионообменную  хроматографию широко применяют  в медицине, биологии, биохимии [11 —15], для контроля окружающей среды, при анализе содержания лекарств и их метаболитов в крови и моче, ядохимикатов в пищевом сырье, а также для разделения неорганических соединений, в том числе радиоизотопов, лантаноидов, актиноидов и др. Анализ биополимеров (белков, нуклеиновых кислот и др.), на который обычно затрачивали часы или дни, с помощью ионообменной хроматографии проводят за 20—40 мин с лучшим разделением. Применение ионообменной хроматографии в биологии позволило наблюдать за образцами непосредственно в биосредах, уменьшая возможность перегруппировки или изомеризации, что может привести к неправильной интерпретации конечного результата. Интересно использование данного метода для контроля изменений, происходящих с биологическими жидкостями [11]. Применение пористых слабых анионообменников на силикагелевой основе позволило разделить пептиды [12].    V

Механизм ионного  обмена можно представить в виде следующих уравнений:

для анионного  обмена

X- + R+Y- ч>■ Y-+R+X-.

для катионного обмена                                                       |

X+ + R-Y+ ч=* Y++R-X+.

В первом случае ион образца Х~ конкурирует с  ионом подвижной фазы Y~ за ионные центры R+ ионообменника, а во втором в конкуренцию с ионами подвижной фазы Y+ за ионные центры R~ вступают катионы образца Х+.

Естественно, что  ионы образца, слабо взаимодействующие  с ионообменником, при этой конкуренции  будут слабо удерживаться на колонке и первыми вымываются с нее и, наоборот, более сильно удерживаемые ионы будут элюировать из колонки последними. Обычно возникают BTqpH4Hbie взаимодействия неионной природы за счет адсорбции или водородных связей образца с неионной частью матрицы или за счет ограниченной растворимости образца в подвижной фазе. Трудно выделить «классическую» ионообменную хроматографию в «чистом» виде, и поэтому некоторые хроматографисты исходят из эмпирических, а не теоретических закономерностей при ионообменной хроматографии.

Разделение конкретных веществ зависит в первую очередь  от выбора наиболее подходящего сорбента и подвижной фазы. В качестве неподвижных  фаз в ионообменной хроматографии  применяют ионообменные смолы и  силикагели с привитыми ионогенными  группами.  

2.4. ЭКСКЛЮЗИОННАЯ ХРОМАТОГРАФИЯ  

Эксклюзионная хроматография представляет собой  вариант! жидкостной хроматографии, в  котором разделение происходит за счет распределения молекул между  растворителем, находящимся внутри пор сорбента, и растворителем,    протекающим между его частицами.

В отличие от остальных вариантов    ВЭЖХ, где разделение идет за счет различного взаимодействия компонентов с поверхностью сорбента, роль твердого наполнителя   в эксклюзионной хроматографии заключается только в формировании пор определенного размера, а неподвижной фазой является растворитель, заполняющий эти поры. Поэтому применение термина «сорбент» к данным наполнителям в определенной степени условно.

Принципиальной  особенностью метода является возможность  разделения молекул по их размеру  в растворе в диапазоне практически любых молекулярных масс — от 10до 108, что делает чего незаменимым для исследования синтетических и биополимеров…

Информация о работе Хроматография