Дисперстные системы

Автор работы: Пользователь скрыл имя, 07 Декабря 2011 в 20:56, реферат

Краткое описание

ДИСПЕРСНЫЕ СИСТЕМЫ - гетерогенные системы из двух или большего числа фаз с сильно развитой поверхностью раздела между ними. Обычно одна из фаз образует непрерывную дисперсионную среду, в объеме которой распределена дисперсная фаза (или неск. дисперсных фаз) в виде мелких кристаллов, твердых аморфных частиц, капель или пузырьков. Д. с. могут иметь и более сложное строение, напр., представлять собой двухфазное образование, каждая из фаз которого, будучи непрерывной, проникает в объем др. фазы. К таким системам относятся твердые тела, пронизанные разветвленной системой каналов-пор, заполненных газом или жидкостью, некоторые микрогетерогенные полимерные композиции и др. Нередки случаи, когда дисперсионная среда "вырождается" до тончайших слоев (пленок), разделяющих частицы дисперсной фазы.

Содержание работы

1. Ведение…………………………………………………………………..2
2. Основные типы дисперсных систем…………………………………...2
3. Образование дисперсных систем………………………………………4
4. Устойчивость дисперсных систем..........................................................5
5. Классификации дисперсных систем…………………………………...8
6. Структурообразование в дисперсных системах и в растворах полимеров……………………………………………………………….16
7. Свойства дисперсных систем и определение размера частиц……….23
8. Список использованной литературы. …………………………………24

Содержимое работы - 1 файл

Документ Microsoft Word.doc

— 287.00 Кб (Скачать файл)

Классификации дисперсных систем.  

По степени  раздробленности (дисперсности) системы делятся на следующие классы: грубодисперсные, размер частиц в которых более 10-5 м; тонкодисперсные (микрогетерогенные) с размером частиц от 10-5 до 10-7 м; коллоидно-дисперсные (ультрамикро-гетерогенные) с частицами размером от 10-7 до 10-9м. Если фиксировать внимание на двух основных компонентахдисперсных систем, то одному из них следует приписать роль дисперсионной среды, а другому - роль дисперсной фазы. В этом случае все дисперсные системы можно классифицировать по агрегатным состояниям фаз.

Эта классификация была предложена Оствальдом и широко используется до настоящего времени. Недостатком классификации следует считать невозможность отнесения дисперсных систем, приготовленных с твердой или жидкой дисперсной фазой, к какому-либо классу, если размер частиц составляет несколько нанометров. Пример такой классификации приведен втабл. 1.

Академик  П.А. Ребиндер предложил более совершенную классификациюдисперсных систем по агрегатным состояниям фаз. Он разделил вседисперсные системы на два класса: свободнодисперсные системы и сплошные (или связнодисперсные) системы (табл. 2 и 3). В свободнодисперсных системах дисперсная фаза не образует сплошных жестких структур (сеток, ферм или каркасов). Эти системы называют золями. В сплошных (связнодисперсных) системах частицы дисперсной фазы образуют жесткие пространственные структуры (сетки, каркасы, фермы). Такие системы оказывают сопротивлениедеформации сдвига. Их называют гелями.

Дисперсная система по классификации Ребиндера обозначается дробью, в которой дисперсная фаза ставится в числителе, а дисперсионная среда – в знаменателе. Например: Т12. Индекс 1 обозначает дисперсную фазу, а индекс 2 – дисперсионную среду.

Коллоидная химия изучает свойства как тонко-, так и грубодисперсных систем; как свободно-, так и связнодисперсных систем.

Включение в  одну науку столь большого количества разнообразных систем, различных  как по природе фаз, так и по размерам частиц и агрегатному состоянию  фаз, основано на том, что все они  обладают общими свойствами - гетерогенностью и принципиальной термодинамической неустойчивостью. Центральное место в коллоидной химии занимают ультрамикрогетерогенные системы со свободными частицами. Это - так называемые, коллоидные системы.

Таблица 1

Классификация дисперсных систем по агрегатным состояниям фаз.  

Дисперсион-ная  среда Дисперс-ная  фаза Примеры дисперсных систем 
Твердая Твердая Рубиновое стекло; пигментированные волокна; сплавы; рисунок на ткани, нанесенный методом пигментной печати
Твердая Жидкая Жемчуг, вода в граните, вода вбетоне, остаточный мономер в полимерно-мономерных частицах
Твердая Газо- образная Газовые включения  в различныхтвердых телах: пенобетоны, замороженные пены, пемза, вулканическая лава, полимерныепеныпенополиуретан 
Жидкая Твердая Суспензиикраскипастызоли, латексы
     
Жидкая Жидкая Эмульсиимолоконефть, сливочноемасло, маргарин, замасливателиволокон
Жидкая Газо- образная Пены, в том числе для пожаротушения и пенных технологий замасливания волокон, беления и колорирования текстильных материалов
Газообразная Твердая Дымы, космическая пыльаэрозоли
Газообразная Жидкая Туманы, газы в момент сжижения
Газообразная Газо- образная Коллоидная система не образуется

Коллоидные системы необычайно лабильны, т.е. неустойчивы. Для многих из них достаточно прибавления ничтожного количества электролита, чтобы вызвать выпадение осадка. Причина столь легкого изменения состоянияколлоидных систем связана с непостоянством степени их дисперсности. Различают два вида устойчивости любой раздробленной системы - кинетическую и агрегативную. 
 
 
 
 
 
 
 
 
 

Таблица 2

Примеры свободнодисперсных систем

1. Дисперсные системы вгазах  2. Дисперсные системы вжидкостях 
Коллоидная  дисперсность

Т1– пыль в верхних слоях атмосферы,аэрозоли.

Коллоидная  дисперсность

Т1– лиозоли, дисперсные красители в воделатексы синтетических полимеров.

Грубая  дисперсность Грубая дисперсность
Т1– дымы

Ж1– туманы

Т1– суспензии

Ж1– жидкие эмульсии

Г1– газовые эмульсии 

3. Дисперсные системы в твердых телах
Т1– твердые золи, например, золь золота в стекле,

пигментированные  волокна, наполненные полимеры

В основу этой классификации положено агрегатное состояние фаз дисперсной системы.

Понятие агрегативной устойчивости, которое впервые ввел Н.П. Песков, подразумевает отсутствие агрегирования, т.е. снижения степени  дисперсностиколлоидной системы при хранении. Для определения кинетической устойчивости необходимо изучать условия выделения диспергированных частиц в гравитационном или центробежном поле. Скорость подобного выделения зависит от интенсивности броуновского движения частиц, т.е. от степени дисперсности системы и разности плотности дисперсионной среды и дисперсной фазы, а также от вязкости среды.

Таблица 3

Связнодисперсные  системы

1. Системы  с жидкой поверхностью раздела фаз 2. Системы с  твердой поверхностью раздела  фаз
Г1– пены

Ж1– пенообразныеэмульсии

Г1- пористые тела, натуральные волокна, пемза, губка, древесные угли

Ж1– влага в граните

Т1– взаимопроникающие сеткиполимеров

Если хотят  определить агрегативную устойчивость системы, то исследуют условия постоянства (или напротив - непостоянства) степени  дисперсности системы. Одно из самых  резких и характерных отличий коллоидной системы как от истинного раствора, так и от грубодисперсных систем состоит в том, что их степень дисперсности является чрезвычайно непостоянной величиной и может изменяться в зависимости от самых разнообразных причин.

В основе этой классификации лежит агрегатное состояние поверхности раздела фаз.

На основании  изложенного выше дадим определение коллоидным системам.

Коллоидными системами называют двух-или многофазные системы, в которых одна фаза находится в виде отдельных мелких частиц, распределенных в другой фазе. Такие ультрамикрогетерогенные системы с определенной (коллоидной) дисперсностью проявляют способность к интенсивному броуновскому движению и обладают высокой кинетической устойчивостью.

Имея высокоразвитую поверхность раздела фаз и, следовательно, громадный избыток свободной поверхностной энергии, эти системы являются принципиально термодинамически неустойчивыми, что выражается в агрегации частиц, т.е. в отсутствии агрегативной устойчивости. Однако этими свойствами не исчерпываются все особенности, которыми коллоидные системыотличаются от других систем. Так, например, на первый взгляд кажется непонятным, почему коллоидные частицы, совершая энергичные движения и сталкиваясь между собой, не всегда слипаются в более крупные агрегаты и не выпадают в осадок, как этого следовало бы ожидать на основании второго закона термодинамики, так как при этом уменьшалась бы общая поверхность, а с ней и свободная энергия.

Оказывается, во многих случаях устойчивость таких  систем связана с наличием слоя стабилизатора на поверхности коллоидных частиц. Таким образом, необходимым условием создания устойчивых коллоидных систем является присутствие третьего компонента - стабилизатораСтабилизаторамиколлоидных систем могут быть электролиты или некоторые другие вещества, не имеющие электролитной природы, например высокомолекулярные соединения (ВМС) или поверхностно-активные вещества (ПАВ). Механизм стабилизации электролитами и неэлектролитами существенно различен.

Влияние электролитов на устойчивость коллоидных систем носит сложный характер. В одних случаях ничтожные добавки электролита способны привести к нарушению устойчивости системы. В других - введение электролитаспособствует увеличению стабильности.

Информация о работе Дисперстные системы