Управление процессом получения стекломассы в производстве

Автор работы: Пользователь скрыл имя, 25 Февраля 2012 в 14:13, курсовая работа

Краткое описание

Во многих промышленных государствах, в том числе и в нашей стране, стекольную промышленность причисляют к малым отраслям производства. Но всё же стекольная промышленность занимает ключевую позицию, так как стекло в качестве (заводского) материала часто является необходимой основой для готового изделия или целой системы. Стекольная промышленность по условиям поставок тесно связана с другими отраслями промышленности.

Содержимое работы - 11 файлов

1.Техническое предложение (6 стр.).doc

— 89.00 Кб (Открыть файл, Скачать файл)

Большие рамки.doc

— 265.00 Кб (Открыть файл, Скачать файл)

0.Введение (2 стр.).doc

— 64.50 Кб (Открыть файл, Скачать файл)

2.Эскизный проект (7 стр.).doc

— 101.50 Кб (Открыть файл, Скачать файл)

3.Технический проект.doc

— 603.50 Кб (Скачать файл)

Модуль дискретного вывода имеет релейные выходы и не требует внешнего питания. При получении дискретных сигналов от датчиков-реле в контроллере

формируется дискретный сигнал и срабатывает определенное реле модуля дискретного вывода А2.4.1.Z. . При этом напряжение 24В постоянного тока от внешнего источника питания U10 и U11 подается на соответствующие пусковые устройства – обмотки реле напряжения KV1-KV4 и магнитные пускатели КМ1- КМ3. Сигналы на исполнительные механизмы снимаются с контактов с1-с11 модуля дискретного вывода А2.4.1.Z.  Модуль имеет 16 независимых выходов, объединенных в группы по 2 с общим проводом.

Рассмотрим работу схемы управления: дутьевым вентилятором подачи воздуха в регенератор, электродвигателями загрузчика шихты и ленточного конвейера. Питание на схему управления подается от блока питания 24В постоянного тока U10 через автоматический выключатель SF2, защищающий схему от короткого замыкания. В схеме предусмотрен как ручной, так и автоматический режим управления, выбираемый ключом управления SA1. Если ключ управления находится в первом положении, то возможно только ручное управление, если в третьем – автоматическое. Второе положение является нейтральным и управление невозможно.

Питание силовой части осуществляется 3-х фазным переменным током 380В 50Гц. Питание на двигатели подается через общий силовой выключатель QF1, а на каждый двигатель через силовые выключатели  QF2, QF3, QF4.

В ручном режиме (положение 1 ключа SA1) управление двигателями М1, М2, М3 осуществляется с помощью кнопочного поста SB1.1, SB1.2; SB2.1, SB2.2 и SB3.1, SB3.2 соответственно.

Рассмотрим управление двигателем М1. При нажатии на кнопку SB1.2 питание от блока питания U10 подается через замкнутые контакты кнопки SB1.1 и контакты тепловых реле  F1.1,F2.1 на магнитный пускатель КМ1, который, срабатывая, замыкает свой контакт КМ1.1, блокируя кнопку SB1.2. Таким образом, цепь пускателя остаётся замкнутой при отпускании кнопки SB1.2. Одновременно замыкаются и остальные контакты пускателя КМ1.2, КМ1.3, КМ1.4, подавая напряжение на двигатель М1, происходит пуск ленточного конвейера. При нажатии на кнопку SB1.1 происходит разрыв цепи пускателя КМ1, размыкание контактов КМ1.1, КМ1.2, КМ1.3 и КМ1.4. Происходит остановка двигателя. Так как контакт КМ1.1 разомкнут, при отпускании кнопки SB1.1 питание на пускатель КМ1 не подается.  Работа цепи управления двигателем М2 аналогична.

В автоматическом режиме (положение 3 ключа SA1) управление двигателями М1, М2, М3 осуществляется с помощью модуля дискретного вывода А2.4.1.Z. Рассмотрим управление двигателем М1. Для пуска двигателя в автоматическом режиме достаточно замкнуть контакты С3 и С1, чтобы подать питание на магнитный пускатель КМ1. Таким образом, когда на модуль дискретного вывода А2.4.1.Z. с контроллера придет управляющий сигнал, замыкаются контакты С3 и С1, сработает магнитный пускатель КМ1, подающий питание на М1. Кнопочный пост SB1.1, SB1.2 в автоматическом режиме не работает. Работа цепи управления двигателями М2, М3 аналогична.

Рассмотрим управление электромагнитным пускателем YA1. В схеме предусмотрен как ручной, так и автоматический режимы управления, выбираемые ключом SA2. Если ключ управления находится в первом положении, то возможно только ручное управление, если в третьем – автоматическое. Второе положение является нейтральным и управление в нём невозможно.

В ручном режиме (положение 1 ключа управления SA2) управление электромагнитным пускателем YA1 осуществляется с помощью кнопочного поста SB 4.1; SB 4.2. При нажатии кнопки SB 4.2 питание от блока питания U11 подаётся через замкнутый контакт кнопки SB 4.1 на обмотку реле напряжения KV.1 которое, срабатывая, замыкает свой контакт КV1.1, блокируя кнопку SB4.2. Одновременно замыкается контакт КV1.2 подавая напряжение на электромагнитный пускатель YA1, происходит его срабатывание. При нажатии на кнопку SB 4.1, происходит разрыв цепи реле напряжения, размыкание контактов КV1.1, КV1.2. Реле электромагнитного пускателя YA1 возвращается в исходное положение. Так как контакт КV1.1 разомкнут, при отпускании кнопки SB 4.1 питание на реле напряжения KV.1 не подаётся. Работа цепей управления остальными электромагнитными пускателями аналогична.

В автоматическом режиме (положение 3 ключа SA2) управление реле электромагнитного пускателя YA1 осуществляется с помощью модуля дискретного вывода А2.4.1.Z. Для срабатывания реле YA1 в автоматическом режиме достаточно замкнуть контакты С6 и С5, чтобы подать питание на обмотку реле напряжения KV1. Таким образом, когда на модуль дискретного вывода А2.4.1.Z. с контроллера придет управляющий сигнал, замыкающий контакты С6 и С5. сработает реле напряжения KV1, подающее питание на реле электромагнитного пускателя YA1. Кнопочный пост SB4.1, SB4.2 в автоматическом режиме не работает. Работа цепей управления остальными электромагнитными пускателями аналогична.

 

 

 

 

 

 

 

 

3.4. Схемы внешних проводок.

Схема внешних проводок отражает связь между всеми элементами управления, контроля и регулирования данной системы, находящимися между объектом управления и щитами.

Схема внешних соединений разработана на основе функциональной схемы автоматизации ДП 220301.800.2010 А2, схемы электрической принципиальной ДП 220301.800.2010 Э3.1 и представлена на схеме ДП 220301.800.2010 С5.

Измерение температуры в зоне осветления стекловаренной печи осуществляется высокотемпературным пирометром (поз. 1-1). С него унифицированный токовый сигнал 4-20 мА передаётся по кабелю КВБбШв5х1,5 №1 в соединительную коробку ЕхКСУВ-ПА-25№1.

Измерение температуры в рабочей зоне стекловаренной печи осуществляется высокотемпературным пирометром (поз. 6-1). С него унифицированный токовый сигнал передаётся по кабелю КВБбШв5х1,5 №2 в соединительную коробку ЕхКСУВ-ПА-25№1.

Измерение расхода топливного газа, подаваемого на горелки стекловаренной печи, осуществляется датчиком расхода (поз. 2-1). С него унифицированный токовый сигнал 4-20 мА передаётся по кабелю КВБбШв5х1,5 №3 в соединительную коробку ЕхКСУВ-ПА-25№1.

Измерение уровня стекломассы в печи осуществляется датчиком уровня (поз. 4-1). С него унифицированный токовый сигнал 4-20 мА передаётся кабелю КВБбШв5х1,5 №4 в соединительную коробку ЕхКСУВ-ПА-25№1.

Управление клапаном на трубопроводе подачи топливного газа на горелки печи осуществляется следующим образом: импульсный сигнал с выхода модуля импульсного вывода контроллера УК-743 через соединительную коробку ЕхКСУВ-ПА-25№1 по кабелю КВБбШв7х1,5 №5 поступает на электромагнитный пускатель (поз. 2-5). Выходное управляющее воздействие поступает на электрический исполнительный механизм (поз. 2-7), установленный на линии подачи топливного газа на горелки стекловаренной печи.

Измерение температуры внутри выработочного канала осуществляется высокотемпературным пирометром (поз. 13-1). С него унифицированный токовый сигнал 4-20 мА передаётся по кабелю КВБбШв5х1,5 №6 в соединительную коробку ЕхКСУВ-ПА-25№1.

Измерение концентрации кислорода в отходящих дымовых газах из выработочного канала осуществляется датчиком концентрации кислорода (поз. 20-1). С него унифицированный токовый сигнал 4-20 мА передаётся по кабелю КВБбШв4х1,5 №7 в соединительную коробку ЕхКСУВ-ПА-25№2.

Измерение расхода воздуха, подаваемого в смеситель №1, осуществляется датчиком расхода (поз. 21-1). С него унифицированный токовый сигнал 4-20 мА передаётся по кабелю КВБбШв4х1,5 №8 в соединительную коробку ЕхКСУВ-ПА-25№2.

Управление клапаном на трубопроводе подачи воздуха в смеситель №1 осуществляется следующим образом: импульсный сигнал с выхода модуля импульсного вывода контроллера УК-743 через соединительную коробку ЕхКСУВ-ПА-25№2 по кабелю КВБбШв7х1,5 №9 поступает на электромагнитный пускатель (поз. 21-5). Выходное управляющее воздействие поступает на электрический исполнительный механизм (поз. 21-7), установленный на линии подачи воздуха в смеситель №1.

Измерение температуры внутри питателя осуществляется высокотемпературным пирометром (поз. 14-1). С него унифицированный токовый сигнал 4-20 мА передаётся по кабелю КВБбШв5х1,5 №10 в соединительную коробку ЕхКСУВ-ПА-25№2.

Измерение концентрации кислорода в отходящих дымовых газах из питателя осуществляется датчиком концентрации кислорода (поз. 22-1). С него унифицированный токовый сигнал 4-20 мА передаётся по кабелю КВБбШв4х1,5 №11 в соединительную коробку ЕхКСУВ-ПА-25№2.

Измерение расхода воздуха, подаваемого в смеситель №2, осуществляется датчиком расхода (поз. 26-1). С него унифицированный токовый сигнал 4-20 мА передаётся по кабелю КВБбШв4х1,5 №12 в соединительную коробку ЕхКСУВ-ПА-25№2.

Управление клапаном на трубопроводе подачи газо-воздушной смеси на горелки питателя осуществляется следующим образом: импульсный сигнал с выхода модуля импульсного вывода контроллера УК-743 через соединительную коробку ЕхКСУВ-ПА-25№2 по кабелю КВБбШв7х1,5 №13 поступает на электромагнитный пускатель (поз. 14-5). Выходное управляющее воздействие поступает на электрический исполнительный механизм (поз. 14-7), установленный на линии подачи газо-воздушной смеси на горелки питателя..

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. Расчёт каскадной системы регулирования температуры в зоне осветления стекловаренной печи.

3.5.1. Анализ печи для варки стекла как объекта управления.

В качестве варочного агрегата на предприятии используется ванная печь для варки стекла с поперечным направлением пламени. Печь предназначена для получения однородной стекломассы заданного состава. 

В печи выделяют три зоны:

- зона варки, предназначенная для расплавления компонентов шихты и предварительной варки стекломассы;

- зона осветления, в которой происходит очищение шихты от примесей металлов и удаление мелких пузырьков воздуха;

- рабочая зона, в которой происходит варка очищенного стекла.

Проведем анализ печи для варки стекла как объекта управления:

Выходными регулируемыми параметрами для данного объекта являются:

- уровень стекломассы в печи;

- давление - разрежение в печи;

- температура газо-воздушной среды в зоне осветления печи;

- концентрация кислорода в отходящих газах печи.

Входные управляющие величины:

- расход газа;

- расход воздуха;

- количество отходящих газов;

- количество сырья;

- расход воздуха на барботаж.

Возмущающие измеряемые величины:

- параметры газа (давление, температура, влажность);

- параметры воздуха (давление, температура, влажность);

- параметры окружающей среды (давление, температура, влажность).

Возмущающие неизмеряемые параметры:

- состав сырья;

- скорость движения сырья в ходе процесса.

Температура в зоне осветления – один из наиболее важных параметров печи, так как она наиболее сильно влияет на качественный состав стекломассы, а значит и на качество выпускаемой продукции. На предприятии реализована одноконтурная система регулирования температуры в зоне осветления печи. Температура регулируется  изменением подачи топливного газа на горелки печи.

Использование каскадной системы позволит уменьшить динамическое

отклонение и улучшить динамику процесса. Поэтому предлагается для регулирования температуры в зоне осветления печи использовать каскадную АСР. В качестве вспомогательной координаты предлагается использовать расход топливного газа, так как расход топливного газа на горение  более оперативно характеризуют текущее состояние объекта. В качестве регулирующего параметра в данной системе предлагается использовать расход топливного газа, поступающего к горелкам печи.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.2. Нахождение динамических характеристик объекта

Исходными данными для расчета являются графики двух переходных процессов объекта управления (ОУ).

Для получения динамической характеристики печи по основному каналу управления были сняты изменения значения температура в зоне осветления печи при ступенчатом изменении расхода природного топливного газа. В качестве ступенчатого изменения расхода природного топливного газа принято 5 %-ое открытие клапана на линии подачи природного топливного газа.

 

Переходная характеристика  для основной координаты приведена на рис.1

Рис.1 Переходная характеристика  для основной координаты.

             

 

 

 

 

 

 

Аналогично была получена вторая графическая зависимость изменения расхода природного газа при 5 %-ом открытие клапана на линии подачи газа.

Переходная характеристика для вспомогательной координаты приведена  на рис.2

                                                                                                                 

Рис.2 Переходная характеристика  для вспомогательной координаты.

 

 

0.Оглавление.doc

— 75.00 Кб (Открыть файл, Скачать файл)

6.Заключение.doc

— 61.50 Кб (Открыть файл, Скачать файл)

4.Безопасность и экологичность проекта (11 стр.).doc

— 158.00 Кб (Открыть файл, Скачать файл)

5.Экономическое обоснование проекта (11 стр.).doc

— 162.00 Кб (Открыть файл, Скачать файл)

7. Список литературы.doc

— 69.00 Кб (Открыть файл, Скачать файл)

Титульнег (5 стр.).doc

— 158.48 Кб (Открыть файл, Скачать файл)

Информация о работе Управление процессом получения стекломассы в производстве