Автор работы: Пользователь скрыл имя, 24 Марта 2013 в 13:39, реферат
Многообразие органического мира » Высшие растения (классификация)
Высшие растения (классификация)
Подцарство Высшие растения в настоящее время включает более 300 тыс. видов, объединенных в восемь отделов; из них отдел Риниофиты полностью исчез еще в девонский период палеозойской эры, остальные существуют до сих пор.
Наиболее часто перекрестное опыление осуществляется насекомыми и значительно реже ветром (береза, ольха, пырей, осоки), птицами, водой (водные растения).
В процессе длительной эволюции приспособление цветка к опылению насекомыми привело к формированию ярких, хорошо заметных, часто с приятным запахом цветков с нектарниками, вырабатывающими сладкую сахаристую жидкость. Кроме того, у таких растений образуется много пыльцы, которая служит кормом для ряда насекомых. Привлеченные яркой окраской или запахом цветка, насекомые, извлекая нектар из глубины цветка, касаются липкой или шероховатой поверхности пыльцевых зерен, которая прилипает к их телу. Перелетев на другой цветок, насекомое переносит часть пыльцы на рыльце пестика.
У цветков ветроопыляемых растений околоцветник отсутствует или плохо развит и не препятствует движению ветра; тычинки длинные, свисающие; пыльца сухая и мелкая, образуется в большом количестве; рыльца пестиков длинные, часто перистые. Большинство ветроопыляемых растений цветут до появления листьев, что облегчает опыление.
При перекрестном опылении, в отличие от самоопыления, у растений повышается уровень гетерозиготности потомства, что позволяет ему легче адаптироваться к постоянному изменению условий среды. В то же время самоопыление имеет одно существенное преимущество по сравнению с перекрестным: оно не зависит от погодных условий и посредников, поэтому осуществляется при любых условиях.
Оплодотворение. Попав на рыльце пестика, пыльцевое зерно начинает прорастать (рис. 8.20). Из Beгетативной клетки развивается длинная пыльцевая трубка, дорастающая по тканям столби ка до завязи и далее —до семязачатка. Из генеративной клетки к этому моменту образуются два спермия, которые спускаются в пыльцевую трубку. Рост пыльцевой трубки стимулируют ауксины, вырабатываемые пестиками, а к завязи она направляется в результате хемотропизма.
Рис. 8.20. Схема двойного оплодотворения у цветковых растений: а — продольный разрез пестика; б — прорастание пыльцевого зерна; в — проникновение пыльцевой трубки в зародышевый мешок; г — излияние содержимого пыльцевой трубки (двух спермиев) в зародышевый мешок; д — зародышевый мешок после оплодотворения: 1 — прорастающее пыльцевое зерно; 2 — пыльцевая трубка; 3 — завязь; 4 — зрелый зародышевый мешок; 5 — спермии; 6 — вегетативное ядро; 7 — си-нергиды; 8 — яйцеклетка; 9 — полярные ядра; 10 — антиподы; 11 — зигота; 12 — триплоидное ядро эндосперма.
Пыльцевая трубка входит
в семязачаток через
После этого один из спермиев оплодотворяет яйцеклетку. В результате образуется диплоидная зигота, из которой развивается зародыш нового растительного организма. Второй спермий сливается с двумя полярными ядрами (или с центральным диплоидным ядром), образуя тришюидную клетку, из которой впоследствии возникает питательная ткань —эндосперм. В его клетках содержится запас питательных веществ, необходимых для развития зародыша растения.
Слияние одного спермия с яйцеклеткой, а другого с полярными ядрами представляет собой уникальную особенность покрытосеменных — двойное оплодотворение. Такой способ оплодотворения был открыт в 1898 г. русским цитологом и эмбриологом С. Г. Навашиным.
Благодаря двойному оплодотворению происходит очень быстрое образование и развитие эндосперма. В сочетании с огромным числом поколений этим достигается существенная экономия энергетических ресурсов растений. Двойное оплодотворение ускоряет также весь процесс формирования семязачатка и семени.
После оплодотворения семязачаток развивается в семя, завязь пестика формирует плод.
У многих растений в образовании плода участвуют и другие части цветка: разросшееся цветоложе, основания чашелистиков, лепестков, тычинок (например, у яблони, груши).
Высшие растения составляют подцарство растительного мира. Существует предположение, что они произошли от каких-то древних групп зеленых водорослей. Для такой гипотезы имеются веские основания: 1) у водорослей и высших растений главный фото-синтезирующий пигмент — хлорофилл а и каротиноиды; 2) основной запасной углевод — крахмал, который откладывается в хлоропластах, а не в цитоплазме, как у других фотосинтезиру-ющих эукариот; 3) целлюлоза является важнейшим компонентом их клеточной стенки; 4) у водорослей и некоторых высших растений (мхи) в матриксе хлоропласта имеются особые включения — пиреноиды; 5) при клеточном делении у растений и некоторых водорослей образуются фрагмопласт — внутриклеточная пластинка, зачаток клеточной стенки.
Высшие растения появились на суше примерно 430 млн. лет назад в виде небольших по размеру и примитивных по строению риниофитов, или псилофитов. В дальнейшем их эволюция неразрывно связана с постепенным завоеванием суши. Оказавшись в совершенно иной наземно-воздушной среде, они постепенно адаптировались к необычной обстановке и на протяжении многих миллионов лет дали громадное разнообразие наземных растений различной величины и сложности строения.
Одним из ключевых событий раннего этапа выхода растений на сушу было появление слор с прочными оболочками, позволяющими переносить засушливые условия и распространяться ветром. В процессе дальнейшего приспособления к наземным условиям существования у высших растений сформировались вегетативные органы — корень, стебель и лист, как результат разделения функций между различными участками тела. Корни обеспечивают закрепление растений в субстрате и водно-минеральное питание, листья — фотосинтез, стебли — транспорт веществ (восходящий и нисходящий токи).
Развитие эффективной проводяще
Далее у высших растений произошло усиление механической прочности путем утолщения клеточной стенки и пропитывания ее лигнином, придающим жесткость ее целлюлозному остову.
Параллельно шла эволюция и органов полового (антеридии и архегонии) и бесполого (спорангии) размножения. Из одноклеточных, характерных для подавляющего большинства водорослей, эти органы становятся многоклеточными, и стенки их надежно защищают развивающиеся гаметы и споры от высыхания.
В жизненном цикле высших наземных растений наблюдается закономерное чередование полового и бесполого поколений.
Гаплоидное поколение называется гаметофитом, поскольку оно способно к половому размножению и образует гаметы. Гаметы формируются в антеридиях и архегониях. В результате оплодотворения образуется зигота, из которой вырастает диплоидный спорофит. Он способен к бесполому размножению с образованием гаплоидных спор. Последние дают начало гаметофит-ному поколению. Одно из этих двух поколений всегда преобладает над другим, и на его долю приходится большая часть жизненного цикла высших растений.
В отличие от других высших
растений, в жизненном цикле моховидных
преобладает гаметофит —
Развитие жизненного цикла моховидных по пути возрастания самостоятельности гаметофита и морфологического упрощения (с потерей самостоятельности) спорофита привело к эволюционному тупику.
В эволюции высших сосудистых растений происходит постепенная редукция (уменьшение и упрощение) гаметофита и преобладание в жизненном цикле спорофита. Так, у плауновидных, хвощевидных и папоротниковидных гаметофит представлен маленьким (от нескольких миллиметров до 3 см) заростком, не расчлененным на органы, живущим несколько недель (у плаунов — несколько лет) независимо от спорофита. На заростках в антери-диях развиваются сперматозоиды, которые, плавая в каплях воды, достигают архегония и сливаются с яйцеклеткой. Благодаря крошечным размерам гаметофитов оплодотворение у хвощей, плаунов и папоротников может происходить даже при ничтожно малых количествах воды в виде капелек росы, тумана и Др.
У голо- и покрытосеменных растений гаметофит полностью утратил способность к самостоятельному образу жизни, и все его развитие протекает на спорофите внутри макроспорангия (или семязачатка).
У голосеменных женский гаметофит — многоклеточный гаплоидный эндосперм с двумя (у сосны) или несколькими (у других голосеменных) архегониями; у покрытосеменных он редуцирован обычно до семи клеток, архегониев не имеет и называется зародышевым мешком. В последнем образуются яйцевой аппарат, состоящий из яйцеклетки и двух клеток-синергид, вторичного диплоидного ядра и клеток-антипод.
Мужской гаметофит семенных растений развивается из микроспоры и представляет собой пыльцевое зерно (пыльцу), прорастающее в пыльцевую трубку с образованием двух спермиев. При этом впервые в эволюции растений процесс оплодотворения становится независимым от наличия капельно-жидкой среды: спермин доставляются к яйцеклеткам пыльцевой трубкой, что является важнейшим приспособлением к наземному образу жизни.
Тканью называется группа клеток, структурно и функционально взаимосвязанных друг с другом, сходных по происхождению, строению и выполняющих определенные функции в организме. Ткани возникли у высших растений в связи с выходом на сушу и наибольшей специализации достигли у покрытосеменных, у которых их выделяют до 80 видов. Важнейшими тканями растений являются образовательные, покровные, проводящие, механические и основные. Они могут быть простыми и сложными. Простые ткани состоят из одного вида клеток (например, колленхима, меристема), а сложные — из различных по строению клеток, выполняющих кроме основных и дополнительные функции (эпидерма, ксилема, флоэма и др.).
Образовательные ткани, или меристемы, являются эмбриональными тканями. Благодаря долго сохраняющейся способности к делению (некоторые клетки делятся в течение всей жизни) меристемы участвуют в образовании всех постоянных тканей и тем самым формируют растение, а также определяют его длительный рост.
Клетки образовательной ткани тонкостенные, многогранные, плотно сомкнутые, с густой цитоплазмой, с крупным ядром и очень мелкими вакуолями. Они способны делиться в разных направлениях.
По происхождению меристемы бывают первичные и вторичные. Первичная меристема составляет зародыш семени, а у взрослого растения сохраняется на кончике корней и верхушках побегов, что делает возможным их нарастание в длину. Дальнейшее разрастание корня и стебля по диаметру (вторичный рост) обеспечивается вторичными меристемами — камбием и феллоге-ном. По расположению в теле растения различают верхушечные (апикальные), боковые (латеральные), вставочные (интеркаляр-ные) и раневые (травматические) меристемы.
Покровные ткани располагаются на поверхности всех органов растения. Они выполняют главным образом защитную функцию — защищают растения от механических повреждений, проникновения микроорганизмов, резких колебаний температуры, излишнего испарения и т. п. В зависимости от происхождения различают три группы покровных тканей —эпидермис, перидерму и корку.
Эпидермис (эпидерма, кожица) — первичная покровная ткань, расположенная на поверхности листьев и молодых зеленых побегов (рис. 8.1). Она состоит из одного слоя живых, плотно сомкнутых клеток, не имеющих хлоропластов. Оболочки клеток обычно извилистые, что обусловливает их прочное смыкание. Наружная поверхность клеток этой ткани часто одета кутикулой или восковым налетом, что является дополнительным защитным приспособлением. В эпидерме листьев и зеленых стеблей имеются устьица, которые регулируют транспирацию и газообмен растения.
Перидерма — вторичная покровная ткань стеблей и корней, сменяющая эпидермис у многолетних (реже однолетних) растений (рис. 8.2.). Ее образование связано с деятельностью вторичной меристемы —феллогена (пробкового камбия), клетки которого делятся и дифференцируются в центробежном направлении (наружу) в пробку (феллему), а в центростремительном, (внутрь) — в слой живых паренхимных клеток (феллодерму). Пробка, феллоген и феллодерма составляют перидерму.
Рис. 8.1. Эпидерма листа различных растений: а—хлорофитум; 6 — плющ обыкновенный: в — герань душистая; г — шелковица белая; 1 — клетки эпидермы; 2 — замыкающие клетки устьиц; 3 — устьичная щель.
Рис 8.2. Перидерма стебля бузины (а — поперечный разрез побега, б — чечевички): I—выполняющая ткань; 2 — остатки эпидермы; 3 — пробка (феллема); 4 — феллоген; 5 — феллодерма.
Клетки пробки пропитаны жироподобным веществом — суберином —и не пропускают воду и воздух, поэтому содержимое клетки отмирает и она заполняется воздухом. Многослойная пробка образует своеобразный чехол стебля, надежно предохраняющий растение от неблагоприятных воздействий окружающей среды. Для газообмена и транспирации живых тканей, лежащих под пробкой, в последней имеются особые образования —чечевички; это разрывы в пробке, заполненные рыхло расположенными клетками.
Корка образуется у деревьев и кустарников на смену пробке. В более глубоко лежащих тканях коры закладываются новые участки феллогена, формирующие новые слои пробки. Вследствие этого наружные ткани изолируются от центральной части стебля, деформируются и отмирают, На поверхности стебля постепенно образуется комплекс мертвых тканей, состоящий из нескольких слоев пробки и отмерших участков коры. Толстая корка служит более надежной защитой для растения, чем пробка.