Автор работы: Пользователь скрыл имя, 13 Сентября 2012 в 12:41, реферат
Витамины – низкомолекулярные органические соединения различной химической природы, абсолютно необходимые для нормальной жизнедеятельности организмов. Являются незаменимыми веществами, так как за исключением никотиновой кислоты они не синтезируются организмом человека и поступают главным образом в составе продуктов питания. Некоторые витамины могут продуцироваться нормальной микрофлорой кишечника.
I. Витамины
1. Общие сведения
3
2. Витаминные недостаточности
8
3. Клинические проявления и диагностика отдельных видов витаминной недостаточности
10
4. Классификация
10
5. Заготовка
11
6. Хранение
11
II. ВИТАМИНЫ К
1. История открытия
11
2. Химическое строение
12
3. Физико-химические свойства
14
4. Специфичность строения. Гомовитамины и антивитамины К
15
5. Биохимические функции
17
6. Связь с витаминами
19
7. Биосинтез
19
8. Авитаминоз
20
9. Распространение в природе и потребность
21
Литература:
5. Заготовка
Собирают сырье в фазе максимального накопления преобладающего витамина. В плодах шиповника это витамин С, хотя в них содержатся также витамины группы В, витамин Е и др. Сырье заготавливают в сухую погоду, сушат в день сбора. Витамины - относительно стойкие соединения и сушка допускается при температуре 70-90°С.
6. Хранение
В сухом, хорошо проветриваемом помещении, оберегая от действия факторов окружающей среды и вредителей.
II. ВИТАМИНЫ К
(Синонимы: витамин коагуляции, антигеморрагический витамин)
1. История открытия
В 1929 г. датский ученый Дам описал авитаминоз у цыплят, находившихся на синтетической диете. Основным признаком его являлась геморрагия – кровоизлияние в подкожную клетчатку, мышцы и другие ткани. Добавление дрожжей в качестве источника витаминов В и рыбьего жира, богатого витаминами А и D, не устраняло патологических явлений. Оказалось, что целебным эффектом обладают зерна злаков и другие растительные продукты. Вещества, излечивающие геморрагию, были названы витаминами К, или витаминами коагуляции, так как было установлено, что кровоизлияния у подопытных птиц, например, связаны с понижением способности крови к свертыванию.
В 1939 г. в лаборатории Каррера впервые был выделен из люцерны витамин К, его назвали филлохинон. В том же году Бинклей и Доизи получили из гниющей рыбной муки вещество с антигеморрагическим действием, по с иными свойствами, чем препарат, выделенный из люцерны. Этот фактор получил наименование витамина К2 в отличие от витамина из люцерны, названного витамином К1.
Краткая история открытия витамина отражена в таблице 1.
Таблица 1 | |
1929 | Открытие витамина К явилось результатом серии экспериментов, проводимых Генри Дэмом. |
1931 | МакФарлейн и сотр. наблюдают дефект свертывания крови. |
1935 | Дэм высказывает предположение, что противогеморрагический витамин цыпленка есть новый жирорастворимый витамин, который он называет витамином К. |
1936 | Дэму и сотр. удаются приготовить неочищенную фракцию протромбина в плазме и продемонстрировать снижение ее активности в случае получения из плазмы цыпленка с недостаточным содержанием витамина К. |
1939 | Дойзи и сотр. синтезируют витамин К1. |
1940 | Брикхаус описывает предпосылки кровотечения как результат синдрома недостаточного всасывания или голодания и устанавливает, что геморрагическая болезнь новорожденных связана с витамином К. |
1943 | Дэм получает Нобелевскую премию за открытие витамина К, фактора свертываемости крови. |
1943 | Дойзи получает Нобелевскую премию за открытие химической структуры витамина К. |
1974 | Стенфло с сотр. и Нелсестуен с сотр. показали зависимую от витамина К стадию в синтезе протромбина. |
1975 | Эсмон и сотр. открывают зависимое от витамина К карбоксилирование протеина в печени. |
Исследование химической природы витаминов К привело к заключению, что в основе их молекулы лежит структура 2-метил-1,4-нафтохинона, который, как и природные витамины К, обладает антигеморрагическим действием.
2. Химическое строение
Природные витамины К являются производными 2-метил-1,4-нафтохинона, у которых в положении 3 водород замещен на остаток спирта фитола или на изопреноидную цепь с различным числом углеродных атомов:
2-метил-1,4-нафтохинон |
Витамин К1, филлохинон, фитохинон (2-метил-3-фитил-1,4- |
Витамин К2 представлен несколькими формами, отличающимися по длине изопреноидной цепи. Выделены производные с боковой цепью из 20, 30 и 35 углеродных атомов.
Витамин К2(20) |
Витамин К2(30) (2-метил-3-дифарнезил-1,4- |
Витамин К2(35) |
Кроме природных витаминов К, в настоящее время известен ряд производных нафтохинона, обладающих антигеморрагическим действием, которые получены синтетическим путем. К их числу относятся следующие соединения:
Витамин К3 (2-метил-1,4-нафтохинон) | Витамин К4 (2-метил-1,4-нафтогидрохинон) |
Витамин К5 (2-метил-4-амино-1- | Витамин К6 (2-метил-1,4- |
Витамин К7 (3-метил-4-амино-1- |
|В 1943 г. А. В. Палладин и М. М. Шемякин синтезировали дисульфидное производное 2-метил-1,4-нафтохинона, получившее название викасола, который применяется в медицинской практике в качестве заменителя витамина К:
Викасол |
3. Физико-химические свойства
Витамин К1 представляет собой светло-желтое масло, которое кристаллизуется при температуре –20° и кипит при 115–145° в вакууме. Это вещество растворимо в хлороформе, диэтиловом эфире, этиловом спирте и других органических растворителях. Его растворы поглощают УФ лучи. Так, в петролейном эфире максимумы адсорбции находятся при длине волны, равной 243, 249, 261, 270 и 325 нм. В этом ряду наибольшую оптическую плотность (= 420) витамин К проявляет при К = 249 нм.
Витамин К2 – желтый кристаллический порошок с температурой плавления 54°, растворяющийся в органических растворителях. Он имеет адсорбционные спектры, сходные с таковыми витамина К1, но менее интенсивно поглощает УФ лучи. Например, в петролейном эфире максимум его поглощения находится при 248 нм и составляет = 295.
Витамин К3 представляет собой лимонно-желтое кристаллическое вещество с характерным запахом. Температура плавления 160°. Он слабо растворим в воде, что обусловлено отсутствием в его молекуле длинной углеводородной цепи.
Витамины К, содержащие в положении 3 изопреноидную цепь, относятся к светочувствительным соединениям. При освещении ультрафиолетом происходит фотолиз, отщепляется изопреноидная цепь, которую замещает гидроксил, а молекула фитола окисляется в кетон фитон.
Витамины К, будучи, как сказано выше, производными нафтохинона, обладают способностью к окислительно-восстановительным реакциям. На этой способности витаминов К основано количественное определение их полярографическим методом. Нафтохиноновая молекула, присоединяя два водорода, переходит в нафтогидрохиноновую. Эта реакция в присутствии кислорода воздуха обратима. Реакция восстановления нафтохинонов (окрашенных веществ) сопровождается их обесцвечиванием.
Витамины К способны непосредственно взаимодействовать с кислородом, присоединяя его в положении 2, 3 молекулы нафтохинона. Продуктом окисления является эпоксид:
Эпоксид витамина К1 |
Эпоксиды витаминов К сохраняют витаминную активность исходных молекул.
Витамин К3 под влиянием света и кислорода воздуха может давать димерное производное:
Димер витамина К3 |
Как отмечено выше, бисульфидное производное витамина К3 обладает витаминной активностью. Это важное для медицинской практики вещество получают воздействием бисульфита натрия на 2-метил-1,4-нафтохинон.
Хорошими стабилизаторами витамина К являются монокальциевый фосфат, пирофосфаты натрия или калия и др., стабилизирующее действие которых состоит в поддерживании в водном растворе кислой реакции (рН = 4,8). Смесь 0,5 кг пропаренной соевой муки с 140 г менадион-натрий-бисульфатом и 26 г СаН4(РO4)2 стабилизирует витамин на 97% в течение трех месяцев.
4. Специфичность строения. Гомовитамины и антивитамины К
К-витаминной активностью обладают многие производные нафтохинона (см. стр. 68). В зависимости от деталей их структуре существенно изменяется величина биологической активности соединения. Сравнительная оценка биологической активности витаминов группы К представлена в табл. 2.
Таблица 2 | |||
Биологическая активность витаминов группы К | |||
Витамины | Активность, % | Витамины | Активность, % |
К1 | 100 | К5 | 100 |
К2 | 60 | К6 | 100 |
К3 | 300 | К7 | 100 |
К4 | 200 |
|
|
Как видно из данных табл. 2, гидрирование хиноидных групп, находящихся в положении 1,4, не оказывает существенного влияния на биологическую активность витаминов К. В то же время гидрирование самого нафтохинонового ядра приводит к почти полной утрате биологической активности молекулы. Замена гидроксильной группы на аминогруппу не сопровождается утратой биологической активности витамина. Для проявления биологической активности обязательно наличие метильной группы в положении 2 нафтохинонового ядра. Введение метильной группы в других позициях нафтохиноновой системы сопровождается резким уменьшением физиологической роли соединения.
Представляет особый интерес влияние изменения длины боковой изопреноидной цепи на биологическую активность производных нафтохинонов. Оказывается, что как укорочение, так удлинение углеводородной цепи вызывает снижение витаминной активности препарата. Наряду с этим полное удаление боковой цепи увеличивает активность молекулы в три раза.
Введение гидроксильных групп в различные позиции нафтохинонового ядра, за исключением положений 1 и 4, почти полностью лишает соединения витаминной активности. Примером 'такого соединения является фтиокол, или 2-метил-З-гидрокси-11,4-
Фтиокол |
Это соединение почти не обладает К-витаминной активностью, по данным некоторых ученых даже имеет антивитаминные свойства. Некоторые химические соединения, имеющие отдельные черты сходства в строении с витаминами группы К, обладают антивитаминными свойствами. Одним из первых антивитаминов К был открыт дикумарол – вещество, выделенное из испорченного сена бобовых растений (донник, клевер):
Дикумарол (3,3’-метилен-бис-4- |
Другим представителем антивитаминов К является производное фтиокола 2,2’-метилен-бис(3-гидрокси-1,
2,2’-метилен-бис(3-гидрокси-1, |
Третьим представителем этой группы соединений является варфарин: