Стволовые клетки и старение

Автор работы: Пользователь скрыл имя, 16 Декабря 2012 в 18:38, реферат

Краткое описание

Быстрый прогресс был сделан в нашей способности модифицировать прогресс старения. Вместо того, чем быть периодом дебильности и ухудшения здоровья, для многих людей поздние годы жизни стали временем сохранения продуктивности, независимости и хорошего здоровья. Прогресс также был достигнут в увеличении продолжительности жизни. Ведущие причины смерти (сердечнососудистая болезнь, рак, легочная болезнь, диабет) являются результатами процессов, которые продолжались десятки лет.

Содержимое работы - 1 файл

Стволовые клетки и старение.doc

— 125.00 Кб (Скачать файл)

Сильная способность гематопоэтических  стволовых клеток к самообновлению предполагает, что эта клеточная  популяция может не стариться  и таким образом обеспечивать не уменьшающееся восстановление клеток крови в течение жизни организма. По контрасту, накапливающиеся экспериментальные данные поддерживают предположение, что ГСК демонстрируют признаки старения и могут иметь ограниченную функциональную продолжительность жизни. Сделано предположение, что связанный с возрастом спад во взрослых ГСК лимитирует продолжительность жизни млекопитающих/7/.

Регенеративная способность  стволовых клеток подняла проблему их взаимоотношений со старением. Является ли угасание функции стволовых клеток само по себе существенной чертой старения. Вопрос имеет две стороны: влияет ли истощение стволовых клеток на накоплении связанных с возрастом дефицитов, или является ли истощение значимым или нет, может ли активация стволовых клеток смягчать дефициты? Рассмотрены два типа систем: 1) истощаемый пул яичниковых фолликулов. Истощение фолликулов ведет к менопаузе; 2) резерв гематопоэтических клеток. Значительные количества сохраняются в течение всей жизни, но на мышиных моделях было показано, что эндогенная репликативная активность резко снижается с возрастом/30/.

Вопрос о том изменяются ли стволовые клетки в процессе старения был предметом значительной дискуссии  в течение последних двух декад. Значительное расширение знаний о гематопоэтических стволовых клетках и гематологии развития в последние несколько лет заново открыл этот вопрос для критического анализа. Изменились знания об анатомическом местоположении и функции гематопоэтических клеток, от раннего эмбриона до старости. В то время как базовый гематопоэтический потенциал при старении сохраняется, способность к восстановлению после гематологического стресса и к самообновлению стволовых клеток постепенно снижается. Различие таким образом было сделано для стабильного гематопоэза при старении и потенциала развития стволовых клеток. Установление подходящих инструментов для идентификации и изучения очищенных стволовых клеток и популяций клеток с измененной принадлежностью предлагает прямой подход для дальнейшего объяснения старения в последовательности от примитивных стволовых клеток к зрелым клеткам крови/8/.

Таким образом, гематопоэз сохраняется в течение всей жизни, хотя способность справляться с  гематологическим стрессом уменьшается  в пожилом возрасте. Костный мозг содержит высокомобильную популяцию CXCR4+ клеток, которая экспрессирует мРНК/белки для различных маркеров ранних тканевых стволовых клеток (tissue-committed stem cells (TCSCs)). Основываясь на наблюдениях, что число тканевых стволовых клеток достигает наиболее высокого уровня в костном мозге молодых животных и уменьшается, получено новое понимание природы старения и возможность объяснения, почему процесс регенерации становится менее эффективным с возрастом. Кроме гематопоэтических стволовых клеток, костный мозг содержит эндотелиальные стволовые клетки, мезенхимальнные стволовые клетки, мультипотентные взрослые прогениторные клетки и тканевые стволовые клетки . Предлагается гипотеза, что все эти изменчивые стволовые клетки, полученные из костного мозга представляют в действительности разные субпопуляции ТСК. Эти клетки накапливаются в костном мозге в течение онтогенеза и, будучи мобильной популяцией клеток, освобождаются после тканевого повреждения для регенерации поврежденных органов..

9.Старение и  рак.

Стволовые клетки определяются по их способности к самообновлению и способностью дифференцироваться в один или более типов клеток. Стволовые клетки могут быть разделены, в зависимости от их происхождения, на эмбриональные и взрослые. Эмбриональные стволовые клетки появляются на ранних стадиях развития эмбриона и могут дать начало клеткам всех трех слоев зародыша. Взрослые стволовые клетки, впервые идентифицированные в гематопоэтической ткани, могут быть обнаружены в различных тканях взрослого организма. При нормальных физиологических условиях взрослые стволовые клетки могут дифференцироваться в ограниченное число клеточных типов, которые содержаться в определенной ткани или органе. Взрослые стволовые клетки ответственны за тканевое самообновление и истощение их репликативной способности может вносить вклад в старение тканей. Потеря неограниченной способности к пролиферации у некоторых взрослых стволовых клеток и/или у их прогениторов может включать эволюционные компромиссы: старение может предотвращать рак. Эмбриональные стволовые клетки демонстрируют неограниченную способность к самообновлению из-за экспрессии теломеразы. Хотя они обладают некоторыми характеристиками раковых клеток, эмбриональные стволовые клетки демонстрируют замечательную устойчивость к нестабильности генома и злокачественной трансформации. Понимание механизмов супрессии опухолей, осуществляемых стволовыми клетками, может внести вклад в развитие новых терапий рака и безопасных основанных на клетках терапий для связанных с возрастом болезней/18/.

Человеческий локус INK4a/ARF кодирует два связанных супрессорных белка опухолей,

p16INK4a and ARF, которые соответственно  регулируют пути ретинобластомы (РБ) и p53.

Генетические данные твердо свидетельствуют о том, что оба  белка обладают значительной активностью по супрессии опухолей in vivo. В дополнение к их непересекающимся ролям в предотвращении рака, один или оба белка индуцируются при определенных условиях в большинстве типов культур мышиных и человеческих клеток, и поэтому являются критическими эффекторами старения Также данные по мышиным и человеческим клеточным типам заставляют предположить, что эта ингибиторная активность роста опухолей может сходно обуславливать постоянное торможение роста in vivo. Когда такое старение происходит в клетке, имеющей потенциал самообновления (т.е. в тканевой стволовой клетке) , происходит сопровождающее его снижение регенераторных способностей органа, поддерживаемого стволовыми клетками. В свою очередь сопутствующее уменьшения резерва стволовых клеток является основной чертой старения млекопитающих. Поэтому эспрессия локуса INK4a/ARF, по-видимому, не только является основным супрессором опухолей, но также является эффектором старения у млекопитающих/28/.

Учитывая уникальные способности  стволовых клеток к самообновлению, дифференцировке и пролиферации не удивительно, что они являются критически важными для организма в течение развития и поддерживают гомеостаз. Когда что-нибудь происходит не правильно со стволовой клеткой, это скорее всего приведет к далеко идущим последствиям, поскольку стволовые клетки сохраняются в течение всей жизни особи. Стволовые клетки участвуют в двух важных биологических феноменах: неизбежном процессе старения и важном биологическом явлении, частота которого возрастает с возрастом, - раке. Есть данные о неспособности стволовых клеток мыши пассироваться неопределенно долго и о регулярной репликации в пуле покоящихся стволовых клеток .Острая миелоидная лейкемия происходит из стволовых клеток, что подтверждается данными, полученными на экспериментальных моделях на мышах, так и клиническими наблюдениями. Предлагается модель, в которой старение популяции гематопоэтической системы в может создать условия, которые являются пермессивными для развития лейкемии, по сути предполагается, что старение является вторичным событием по отношению к образованию лейкоцитов/1/.

Сравнительный анализ опухолевых и стареющих клеток показал, что  черты их фенотипа во многих случаях  противоположны. Раковые клетки не стареют, их характеристики роста и  метаболизма противоположны тем, которые наблюдаются при клеточном старении (как репликативные, так и функциональные). По многим таким характеристикам раковые клетки сходны с эмбриональными клетками. Можно сказать, что рак проявляет себя, как локальное неконтролируемое “омоложение организма.” Доступные данные, полученные как на людях, так и на животных, заставляют предположить, что противоположные фенотипические черты старения и рака обусловлены противоположной регуляцией общих генов, таких, как участвующие в апоптозе/прекращении роста или в путях трансдукции сигналов роста в клетке. Например, в стареющих клетках и организмах протоонкогены часто подавлены, в то время как супрессоры опухолей постоянно экспрессируются. В раковых клетках ситуация прямо противоположна: протоонкогеы обычно оверэкспрессированы, в то время как супрессоры опухолей подавлены. Этот факт может иметь различные приложения для развития различных методов лечения старения и рака. Первое, гены , противоположным образом регулируемые при раке и старении могут быть кадидатами для мишений для вмешательств против старости. Их “сходная с раком регуляция”, если ее строго контролировать, может омолодить стареющий организм.. Второе, факт, что раковые клетки не стареют, подразумевает, что эти клетки могут иметь преимущество для выживания в окружении стареющих клеток. Это может быть частичной причиной для увеличения рака с возрастом, поскольку пропорция стареющих клеток также увеличивается в организме с возрастом. В такой ситуации омоложение нормальных клеток, окружающих опухоль может служить перспективой противоракового лечения. Например, контролируемая активация онкогенов в нормальных клетках хозяина или пересадка молодых пролиферирующих клеток (таких как эмбриональные стволовые клетки) в область около злокачественной опухоли помогает вытеснить раковые клетки скорее, чем убивает их/32/.

Нормальные клетки, как  полагают, защищены против трансформации  за счет постоянного блокирования клеточного цикла и клеточного старения в  ответ на экспрессию активированных онкогенов, таких как RAS.. Ппродолжительное пассирование свежевыделенных неонатальных человеческих фибробластов приводит к увеличению уровней ингибитора циклинзависимой киназы p16 и повышает чувствительность клеток к старению, индуцированному RAS. Эти открытия подразумевают экзогенный стресс, как необходимый кофактор в RAS-индуцированном старении и демонстрируют, что экспрессия RAS может способствовать некоторым характеристикам трансформации при отсутствии других генетических изменений/32/.

Стволовые/прогениторные  клетки обеспечивают гомеостаз ткани и организма и представляют частую мишень трансформации. Хотя эти клетки потенциально бессмертны, их продолжительность жизни ограничена сигнальным путями (p19-p53; p16-Rb), которые активируются повреждением ДНК (дисфункция теломеров, стрессы, вызванные окружающей средой) т ведут к старению или апоптозу Выполнение программ контрольной точки может вести к истощению стволовых клеток и старению организма, в то время как их инактивация вносит вклад в образование опухолей/22/.

Белок p53 играет критическую роль в предотвращении рака. Он отвечает на ряд клеточных стрессов либо апоптозом, либо терминальный блок клеточного цикла, называемым старением. Старение у культивируемых клеток связано с увеличением активности p53, а блокирование p53 активности может задержать старение in vitro. Увеличивающееся количество данных свидетельствует о том, что p53 может влиять на старение организма. Несколько моделей мутантных мышей, у которых наблюдаются изменения в продолжительности жизни и связанные со старением фенотипы имеют дефекты в генах, которые изменяют p53 сигналинг. Недавно создана и охарактеризована мутантная по p53 линия мышей, у которых повышен ответ на p53. Эти p53 мутанты демонстрируют повышенную устойчивость к раку, но имеют сокращенную продолжительность жизни и у них наблюдаются некоторые связанные со старением фенотипы, что заставляет предположить роль p53 в процессе старения. Природа этих фенотипов старения, наблюдаемых в линии мутантов по p53, согласуется с моделью, в которой старение обусловлено отчасти постепенным снижением функциональной способности стволовых клеток/6/.

Старение млекопитающих  происходит частично из-за уменьшения восстановительной способности  тканевых стволовых клеток. Эти самообновляющиеся  клетки становятся злокачественными при  воздействии небольшого числа онкогенных мутаций, и перекрывающиеся механизмы супрессии опухолей (т.е. p16(INK4a)-Rb, ARF-p53 и теломер ) возникли для защиты от этой возможности. Эти полезные антиопухолевые пути, как оказалось, лимитируют продолжительность жизни стволовых клеток, что вносит вклад в старение/29/.

Таким образом, потеря неограниченной способности к пролиферации у некоторых взрослых стволовых  клеток и/или у их прогениторов может  включать эволюционные компромиссы: старение может предотвращать рак. Эмбриональные стволовые клетки демонстрируют неограниченную способность к самообновлению из-за экспрессии теломеразы. Хотя они обладают некоторыми характеристиками раковых клеток, эмбриональные стволовые клетки демонстрируют замечательную устойчивость к нестабильности генома и злокачественной трансформации Сравнительный анализ опухолевых и стареющих клеток показал, что черты их фенотипа во многих случаях противоположны. Раковые клетки не стареют, их характеристики роста и метаболизма противоположны тем, которые наблюдаются при клеточном старении (как репликативные, так и функциональные). По многим таким характеристикам раковые клетки сходны с эмбриональными клетками. Можно сказать, что рак проявляет себя, как локальное неконтролируемое “омоложение организма.” Доступные данные, полученные как на людях, так и на животных, заставляют предположить, что противоположные фенотипические черты старения и рака обусловлены противоположной регуляцией общих генов, таких, как участвующие в апоптозе/прекращении роста или в путях трансдукции сигналов роста в клетке. Например, в стареющих клетках и организмах протоонкогены часто подавлены, в то время как супрессоры опухолей постоянно экспрессируются. В раковых клетках ситуация прямо противоположна: протоонкогеы обычно оверэкспрессированы, в то время как супрессоры опухолей подавлены. Эспрессия локуса INK4a/ARF, по-видимому, не только является основным супрессором опухолей, но также является эффектором старения у млекопитающих. Белок p53 играет критическую роль в предотвращении рака. Он отвечает на ряд клеточных стрессов либо апоптозом, либо терминальный блок клеточного цикла, называемым старением. Старение у культивируемых клеток связано с увеличением активности p53, а блокирование p53 активности может задержать старение in vitro. Увеличивающееся количество данных свидетельствует о том, что p53 может влиять на старение организма. Старение млекопитающих происходит частично из-за уменьшения восстановительной способности тканевых стволовых клеток. Эти самообновляющиеся клетки становятся злокачественными при воздействии небольшого числа онкогенных мутаций, и перекрывающиеся механизмы супрессии опухолей (т.е. p16(INK4a)-Rb, ARF-p53 и теломер ) возникли для защиты от этой возможности. Эти полезные антиопухолевые пути, как оказалось, лимитируют продолжительность жизни стволовых клеток, что вносит вклад в старение.

10.Заключение.

Использование биотехнологических терапий, в том числе стволовых  клеток, будет способствовать замедлению процесса старения. Значительное количество данных в настоящее время указывают на определенные гены, связанные с исключительным долголетием у людей.

Информация о работе Стволовые клетки и старение