Автор работы: Пользователь скрыл имя, 21 Января 2013 в 09:16, шпаргалка
Биохимия и ее задачи
Разделы биохимии:
Значение БХ для медицины:
Белки и их биологическая роль
Характеристика простых белков
Гексозодифосфатный путь превращения углеводов в тканях
В аэробных условиях, когда в ткани в достаточном количестве поступает кислород, происходит подавление гликолиза. При этом уменьшается потребление глюкозы, блокируется образование лактата. Эффект подавления гликолиза дыханием получил название эффекта Пастера.
Глюкоза в аэробных условиях сгорает в клетках с образованием конечных продуктов - воды и углекислого газа. При окислении 1 моль глюкозы будет выделено 38 молекул АТФ, а при окислении 1 глюкозного остатка гликогена – 39 молекул.
Химизм реакций превращения глюкозы такой же, как и в аэробных условиях, но только до стадии образования пирувата.
Превращение глюкозы до пирувата протекает в цитоплазме, затем пируват поступает в митохондрии, где подвергается окислительному декарбоксилированию. Образовавшийся при этом АцКоА в дальнейшем окисляется в митохондриях с участием ферментов ЦТК и сопряженных с ними ферментов дыхательной цепи (ЦПЭ).
Реакция окислительного
декарбоксилирования ПВК
1. дегидрогеназ (НАД, ФАД);
2. декарбоксилаз (ТПФ);
3. ацилтрансфераз (HS-KoA);
4. липоевой кислоты (ЛК), участвующей в переносе углекислого газа.
СН3-СО-СООН (это ПВК)® (пируватдегидрогеназа, НАД, ФАД, HS-KoA, ТПФ, ЛК) СО2 +НАДН2 +Н2О +3АТФ +СН3-С(О)-SKoA (это АцКоА, он поступает в ЦТК).
При окислении глюкозы в аэробных условиях энергия выделяется за счет реакций:
1. субстратного фосфорилирования
на этапах превращения 1,3-
2. за счет реакций
окислительного
Энергетический эффект окисления:
АТФ (глюкозы)=2*(3+1+1+3+12)-2=38
АТФ (гликогена)=2*(3+1+1+3+12)-1=
Конечные продукты образуются:
- углекислый газ на этапах превращения пирувата, оксалосукцината, a-кетоглутаровой;
- вода образуется на
этапах превращения:
Т.о. в отличие от анаэробного пути, аэробный путь окисления глюкозы является энергитически более эффективным и является основным путем обеспечения клеток энергией. При этом окисление идет с образованием конечных продуктов – углекислого газа и воды.
Гексозомонофосфатный путь превращения углеводов в тканях
Гексозомонофосфатный
путь превращения углеводов в
тканях (пентозофосфатный путь, апотолический
путь) протекает в цитоплазме клеток
органов и тканей и представлен
двумя последовательными
Активность этого пути превращения глюкозы зависит от типа ткани и ее функционального состояния. Особенно активно глюкоза окисляется по этому пути в тканях и органах, где синтезируется много липидов: печень, кора надпочечников, жировая ткань, молочные железы. Биологическая роль этого пути связана, прежде всего, с производством 2-х веществ:
1. рибозо-5-фосфата и
его производных, которые
2. НАДФ·Н2, которые в отличие от НАД·Н2 не окисляется в дыхательной цепи митохондрии, а используется как источник протонов и электронов для синтеза веществ, включающего реакции восстановления (ВЖК, холестерина, желчных кислот, стероидных гормонов, витамина D3). НАДФН2 используется для обезвреживания ядов и токсических веществ (в реакции связывания аммиака при восстановительном аминировании a-кетокислот).
Этот путь является единственным поставщиком пентоз для работающих клеток тканей и органов, и на 50% покрывает потребность в НАДФН2, следовательно основная биологическая роль этого пути – анаболическая.
Окислительная стадия пентозного
пути превращения глюкоза отличается
от классического
глюкозо-6-фосфат ®(глюкозо-6-
При определённых
условиях на этом заканчивается окислительная
стадия пентозного цикла. Между пентозами
устанавливается подвижное
Однако в
ряде случаев, когда в клетках
отмечается дефицит кислорода, может
протекать неокислительная
1. транскетолазные реакции:
а) ксилуозо-5-фосфат+рибозо-5-
б) ксилуозо-5-фосфат+эритрозо-4-
2. трансальдолазная реакция:
судогептулозо-7-фосфат+ глицеральдегид-3-фосфат« фруктозо-6-фосфат+ эритрозо-4-фосфат
Баланс окислительной и неокислительной стадий гексозомонофосфатного пути превращения глюкозы в тканях можно записать в виде суммарного уравнения реакции:
6 глюкозо-6-фосфат+ 7Н2О+ 12НАДФ® 5 глюкозо-6-фосфат+ 6СО2 +12НАДФН2 +Фн
Глюконеогенез и другие источники глюкозы для организма человека
Глюкоза является основным углеводом крови. Её концентрация в течение суток колеблется в зависимости от энергозатрат и частоты приемов пищи, содержания углеводов в пище. Для взрослого человека содержание глюкозы в крови составляет от 3,3 до 5,5 ммоль/л. Поддерживается концентрация глюкозы в крови за счет процесса биосинтеза и распада гликогена, глюконеогенеза и за счет углеводов пищи.
Глюконеогенез - это процесс образования глюкозы из неуглеводных предшественников, которыми являются продукты распада белков, липидов и углеводов. Основными являются пируват, лактат. Промежуточными могут быть метаболиты ЦТК, а так же глицерин и АК. Ряд АК (АСП, ТИР, ФЕН, ТРЕ, ВАЛ, МЕТ, ИЛЕ, ГИС, ПРО, АРГ) тем или иным путем превращаются в метаболиты ЦТК – фумаровую кислоту, которая в дальнейшем превращается в ЩУК. Другие АК (ГЛИ, АЛА, ЦИС, СЕР) превращаются в пируват.
Глюконеогенез возможен не во всех тканях. Главным местом синтеза глюкозы является печень, в меньшей степени почки и слизистая оболочка кишечника.
Биологическая роль глюконеогенеза заключается не только в синтезе глюкозы, но и в возвращении лактата в клеточный фонд углеводов. За счет этого процесса поддерживается уровень глюкозы в крови при углеводном голодании и сахарном диабете. Этот путь является единственным, который поддерживает биоэнергетику жизненно важных тканей в кризисных ситуациях.
Большинство реакций глюконеогенеза представляют собой обратимые реакции гликолиза, за исключением 3-х, которые являются термодинамически необратимыми.:
1. гексакиназной;
2. фосфофруктокиназной;
3. пируваткиназной.
Эти реакции
гликолиза имеют при
Обходные реакции гликолиза:
Первая обходная реакция глюконеогенеза связана с образованием фосфоенолпирувата. Она протекает в 2 стадии. Сначала в результате реакции карбоксилирования пируват превращается в ЩУК. Эта реакция протекает в митохондриях, куда ПВК поступает из цитозоля. ЩУК в митохондриях восстанавливается в малат под действием МДГ (НАДН2). Мембраны митохондрий не проницаемы для ЩУК, малат же легко выходит в цитозоль, где окисляясь снова превращается в ЩУК. ЩУК в дальнейшем принимает участие в глюконеогенезе, вступая в реакции декарбоксилирования и фосфорилирования. Донором фосфатного остатка служит ГТФ, но может быть и АТФ.
а) CH3-CO-COOH (это ПВК)® (пируваткарбоксилаза (биотин), +СО2, +АТФ, +Н2О) СООН-СО-СН2-СООН (это ЩУК) +АДФ +Фн;
б) СООН-СО-СН2-СООН (это ЩУК)®(
Вторая реакция связана с образованием фруктозо-6-фосфата:
фруктоза-1,6-дифосфат® (фосфатаза, +Н2О) фруктоза-6-фосфат+ Фн
Третья реакция связана с образованием глюкозы:
глюкозо-6-фосфат® (фосфатаза, +Н2О) глюкоза+ Фн
Образовавшаяся в процессе глюконеогенеза глюкоза может вновь поступать в клетки органов и тканей и принимать участие в метаболизме (использоваться в тканях как энергетический субстрат, откладываться про запас в виде гликогена, участвовать в анаболических реакциях).
В организме взрослого человека массой 70 кг, главным образом в печени, за сутки образуется около 80 гр. глюкозы.
Патология углеводного обмена
Нарушения углеводного обмена могут быть на различных этапах обмена веществ. Основными показателями нарушения является изменение концентрации глюкозы в крови (гипер-, гипоглюкоземия) и появление глюкозы в моче (глюкозурия). Концентрация глюкозы в крови взрослого здорового человека в норме составляет 3,3-5,5 ммоль/л. Появление глюкозы в моче возможно в случае превышения величины почечного порога, который для глюкозы составляет 10 ммоль/л.
Основными причинами развития нарушения углеводного обмена являются:
1. алиментарные. Употребление пищи, богатой углеводами, ведет к быстрому переполнению гликогенного резерва печени, мышц, развитию гиперглюкоземии, глюкозурии. При снижении двигательной активности происходит снижение окислительных процессов и усиление биосинтеза жиров в тканях, что ведет к развитию алиментарного ожирения;
2. при поражении
слизистых оболочек ЖКТ. При
этом в желудке нарушается
образование HCl (гипохлоргидрия или
ахлоргидрия), поступающие углеводы
сбраживаются под влиянием
3. при поражении
печени нарушается биосинтез
и распад гликогена,
4. при поражении
поджелудочной железы
Наиболее грозным заболеванием ПЖЖ является сахарный диабет. При этом поражаются В-клетки, они перестают вырабатывать гормон инсулин. Инсулин – единственный гормон, обеспечивающий транспорт глюкозы в клетки органов и тканей. В случае недостаточной его выработки или отсутствия вообще происходит нарушение биоэнергетики клеток, органов и тканей. В этом случае интенсивному окислению подвергаются белки и липиды, что сопровождается избыточной продукцией аммиака и Ац-КоА.
Для связывания токсичного аммиака отвлекаются кетокислоты (ЩУК и a-кетоглутаровая) из ЦТК, их концентрация резко падает, что приводит к снижению интенсивности окислительных процессов. ЦТК не в состоянии окислить все молекулы ацетил-КоА, образование которых увеличивается с усилением окисления белков и липидов. Создаются условия для их конденсации с образованием кетоновых тел. При сахарном диабете в крови наблюдается гиперкетонемия (норма - до 0,1 г/л) и кетонурия.
2СН3-СОSKoA (это ацетил-КоА) ®(Ац-КоА-трансфераза) ацетоацетил-КоА ® (деацилаза, +Н2О, -HS-KoA) ацетоуксусная кислота.
Ацетоуксусная кислота может превращаться в b-гидроксимасляную кислоту, при этом НАДН2®НАД. Также она может превращаться в ацетон с отщеплением СО2.
В норме содержание
кетоновых тел в крови
Наследственные заболевания, как правило, связаны с нарушением синтеза ферментов, участвующих в метаболизме углеводов. Например, алактазия - неусвояемость углеводов молока (лактозы). Это связано с отсутствием фермента – лактазы, поэтому поступающие с молоком дисахариды не усваиваются. У детей проявляется в виде рвоты, тошноты, поноса, вздутия живота, происходит обезвоживание организма. Лечение: исключение лактозы из пищи и замещение на мальтозу, сахарозу, глюкозу.
Другая группа заболеваний может быть связана с наследственными нарушениями обмена гликогена:
1. гликогенозы, связанные с недостаточным количеством ферментов, участвующих в распаде гликогена (болезнь Гирке, Кори);
2. агликогенозы – заболевания, связанные с нарушением синтеза гликогена (болезнь Льюиса. Андерсона и т.д.).