Шпаргалка по "Биохимии"

Автор работы: Пользователь скрыл имя, 21 Января 2013 в 09:16, шпаргалка

Краткое описание

Биохимия и ее задачи
Разделы биохимии:
Значение БХ для медицины:
Белки и их биологическая роль
Характеристика простых белков

Содержимое работы - 1 файл

шпора бх с картинками.doc

— 1.30 Мб (Скачать файл)

 

Гексозодифосфатный путь превращения  углеводов в тканях

В аэробных условиях, когда в ткани в достаточном количестве поступает кислород, происходит подавление гликолиза. При этом уменьшается потребление глюкозы, блокируется образование лактата. Эффект подавления гликолиза дыханием получил название эффекта Пастера.

Глюкоза в аэробных условиях сгорает в клетках с образованием конечных продуктов  - воды и углекислого газа. При окислении 1 моль глюкозы будет выделено 38 молекул АТФ, а при окислении 1 глюкозного остатка гликогена – 39 молекул.

Химизм реакций  превращения глюкозы такой же, как и в аэробных условиях, но только до стадии образования пирувата.

Превращение глюкозы до пирувата протекает в  цитоплазме, затем пируват поступает  в митохондрии, где подвергается окислительному декарбоксилированию. Образовавшийся при этом АцКоА в дальнейшем окисляется в митохондриях с участием ферментов ЦТК и сопряженных с ними ферментов дыхательной цепи (ЦПЭ).

Реакция окислительного декарбоксилирования ПВК осуществляется при участии ряда ферментов и  кофакторов:

1. дегидрогеназ (НАД, ФАД);

2. декарбоксилаз (ТПФ);

3. ацилтрансфераз (HS-KoA);

4. липоевой  кислоты (ЛК), участвующей в переносе  углекислого газа.

СН3-СО-СООН (это ПВК)® (пируватдегидрогеназа, НАД, ФАД, HS-KoA, ТПФ, ЛК) СО2 +НАДН22О +3АТФ +СН3-С(О)-SKoA (это АцКоА, он поступает в ЦТК).

При окислении глюкозы  в аэробных условиях энергия выделяется за счет реакций:

1. субстратного фосфорилирования  на этапах превращения 1,3-дифосфоглицериновой  кислоты, фосфоенол-ПВК, сукцинил-КоА;

2. за счет реакций  окислительного фосфорилирования  на этапах превращения глицеральдегид-3-фосфата, ПВК, изоцитрата, a-кетоглутаровой кислоты, сукцината, малата.

Энергетический  эффект окисления:

АТФ (глюкозы)=2*(3+1+1+3+12)-2=38

АТФ (гликогена)=2*(3+1+1+3+12)-1=39

Конечные  продукты образуются:

- углекислый газ на этапах превращения пирувата, оксалосукцината, a-кетоглутаровой;

- вода образуется на  этапах превращения: глицеральдегид-3-фосфата, 2-фосфоглицериновой кислоты, пирувата, изоцитрата, a-кетоглутаровой кислоты, сукцината, малата.

 

Т.о. в отличие от анаэробного пути, аэробный путь окисления глюкозы является энергитически более эффективным и является основным путем обеспечения клеток энергией. При этом окисление идет с образованием конечных продуктов – углекислого газа и воды.

 

Гексозомонофосфатный путь превращения углеводов в тканях

Гексозомонофосфатный  путь превращения углеводов в  тканях (пентозофосфатный путь, апотолический  путь) протекает в цитоплазме клеток органов и тканей и представлен  двумя последовательными ветвями: окислительной и неокислительной.

Активность этого пути превращения глюкозы зависит от типа ткани и ее функционального состояния. Особенно активно глюкоза окисляется по этому пути в тканях и органах, где синтезируется много липидов: печень, кора надпочечников, жировая ткань, молочные железы. Биологическая роль этого пути связана, прежде всего, с производством 2-х веществ:

1. рибозо-5-фосфата и  его производных, которые используется  в клетках для биосинтеза важнейших  биологических молекул: АТФ, ГТФ, HSKoA, НАД, ФАД и нуклеиновых  кислот (ДНК, РНК);

2. НАДФ·Н2, которые в отличие от НАД·Н2 не окисляется в дыхательной цепи митохондрии, а используется как источник протонов и электронов для синтеза веществ, включающего реакции восстановления (ВЖК, холестерина, желчных кислот, стероидных гормонов, витамина D3). НАДФН2 используется для обезвреживания ядов и токсических веществ (в реакции связывания аммиака при восстановительном аминировании a-кетокислот).

Этот путь является единственным поставщиком пентоз для работающих клеток тканей и органов, и на 50% покрывает потребность в НАДФН2, следовательно основная биологическая роль этого пути – анаболическая.

Окислительная стадия пентозного пути превращения глюкоза отличается от классического гексозодифосфатного  пути с этапа превращения глюкозы-6-фосфата  и включает 5 реакций:

глюкозо-6-фосфат ®(глюкозо-6-фосфатдегидрогеназа, НАДФ®НАДФН2) 6-фосфоглюкозолактон ® (лактоназа, +Н2О) 6-фосфоглюконовая кислота® (дегидрогеназа 6-фосфоглюконовой кислоты, НАДФ®НАДФН2) 3-кето-6-фосфоглюконовая кислота ®(декарбоксилаза, -СО2) рибулозо-5-фосфат® (изомераза) рибозо-5-фосфат® (эпимераза) ксилуозо-5-фосфат

 

При определённых условиях на этом заканчивается окислительная  стадия пентозного цикла. Между пентозами  устанавливается подвижное равновесие: рибулозо-5-фосфат« (изомераза) рибозо-5-фосфат« (эпимераза) ксилуозо-5-фосфат

Однако в  ряде случаев, когда в клетках  отмечается дефицит кислорода, может  протекать неокислительная стадия пентозного цикла. Основными реакциями  этого этапа являются 2 транскетолазные  реакции и одна трансальдолазная. Все они обратимы. В результате этих реакций образуются субстраты для гликолиза (фруктозо-6-фосфат и глицеральдегид-3-фосфат), а также вещества, характерные для пентозного пути превращения глюкозы. Схематически неокислительную стадию пентозного цикла можно записать так:

1. транскетолазные  реакции:

а) ксилуозо-5-фосфат+рибозо-5-фосфа«(ТПФ) седогептулозо-7-фосфат+ глицеральдегид-3-фосфат;

б) ксилуозо-5-фосфат+эритрозо-4-фосфат«(ТПФ) фруктозо-6-фосфат+ глицеральдегид-3-фосфат;

2. трансальдолазная  реакция:

судогептулозо-7-фосфат+ глицеральдегид-3-фосфат« фруктозо-6-фосфат+ эритрозо-4-фосфат

 

Баланс окислительной  и неокислительной стадий гексозомонофосфатного  пути превращения глюкозы в тканях можно записать в виде суммарного уравнения реакции:

6 глюкозо-6-фосфат+ 7Н2О+ 12НАДФ® 5 глюкозо-6-фосфат+ 6СО2 +12НАДФН2 +Фн

 

Глюконеогенез и другие источники  глюкозы для организма человека

Глюкоза является основным углеводом крови. Её концентрация в течение суток колеблется в  зависимости от энергозатрат и частоты  приемов пищи, содержания углеводов в пище. Для взрослого человека содержание глюкозы в крови составляет от 3,3 до 5,5 ммоль/л. Поддерживается концентрация глюкозы в крови за счет процесса биосинтеза и распада гликогена, глюконеогенеза и за счет углеводов пищи.

Глюконеогенез - это процесс образования глюкозы из неуглеводных предшественников, которыми являются продукты распада белков, липидов и углеводов. Основными являются пируват, лактат. Промежуточными могут быть метаболиты ЦТК, а так же глицерин и АК. Ряд АК (АСП, ТИР, ФЕН, ТРЕ, ВАЛ, МЕТ, ИЛЕ, ГИС, ПРО, АРГ) тем или иным путем превращаются в метаболиты ЦТК – фумаровую кислоту, которая в дальнейшем превращается в ЩУК. Другие АК (ГЛИ, АЛА, ЦИС, СЕР) превращаются в пируват.

Глюконеогенез возможен не во всех тканях. Главным местом синтеза глюкозы является печень, в меньшей степени почки и слизистая оболочка кишечника.

Биологическая роль глюконеогенеза заключается не только в синтезе глюкозы, но и в возвращении лактата в клеточный фонд углеводов. За счет этого процесса поддерживается уровень глюкозы в крови при углеводном голодании и сахарном диабете. Этот путь является единственным, который поддерживает биоэнергетику жизненно важных тканей в кризисных ситуациях.

Большинство реакций глюконеогенеза представляют собой обратимые реакции гликолиза, за исключением 3-х, которые являются термодинамически необратимыми.:

1. гексакиназной;

2. фосфофруктокиназной;

3. пируваткиназной.

Эти реакции  гликолиза имеют при глюконеогенезе обходные пути, которые связаны с  образованием фосфоенолпирувата, фруктозо-6-фосфата и глюкозы.

 

Обходные реакции  гликолиза:

Первая  обходная реакция глюконеогенеза связана с образованием фосфоенолпирувата. Она протекает в 2 стадии. Сначала в результате реакции карбоксилирования пируват превращается в ЩУК. Эта реакция протекает в митохондриях, куда ПВК поступает из цитозоля. ЩУК в митохондриях восстанавливается в малат под действием МДГ (НАДН2). Мембраны митохондрий не проницаемы для ЩУК, малат же легко выходит в цитозоль, где окисляясь снова превращается в ЩУК. ЩУК в дальнейшем принимает участие в глюконеогенезе, вступая в реакции декарбоксилирования и фосфорилирования. Донором фосфатного остатка служит ГТФ, но может быть и АТФ.

а) CH3-CO-COOH (это ПВК)® (пируваткарбоксилаза (биотин), +СО2, +АТФ, +Н2О) СООН-СО-СН2-СООН (это ЩУК) +АДФ +Фн;

б) СООН-СО-СН2-СООН (это ЩУК)®(фосфоеноилпируваткарбоксикиназа, +ГТФ, +Н2О) СООН-С(О~РО3Н2)=СН2+ СО2 +ГДФ.

 

Вторая  реакция связана с образованием фруктозо-6-фосфата:

фруктоза-1,6-дифосфат® (фосфатаза, +Н2О) фруктоза-6-фосфат+ Фн

Третья  реакция связана с образованием глюкозы:

глюкозо-6-фосфат® (фосфатаза, +Н2О) глюкоза+ Фн

 

Образовавшаяся  в процессе глюконеогенеза глюкоза  может вновь поступать в клетки органов и тканей и принимать  участие в метаболизме (использоваться в тканях как энергетический субстрат, откладываться про запас в виде гликогена, участвовать в анаболических реакциях).

В организме  взрослого человека массой 70 кг, главным  образом в печени, за сутки образуется около 80 гр. глюкозы.

 

Патология углеводного обмена

Нарушения углеводного обмена могут быть на различных этапах обмена веществ. Основными показателями нарушения является изменение концентрации глюкозы в крови (гипер-, гипоглюкоземия) и появление глюкозы в моче (глюкозурия). Концентрация глюкозы в крови взрослого здорового человека в норме составляет 3,3-5,5 ммоль/л. Появление глюкозы в моче возможно в случае превышения величины почечного порога, который для глюкозы составляет 10 ммоль/л.

 

Основными причинами  развития нарушения углеводного  обмена являются:

1. алиментарные. Употребление пищи, богатой углеводами, ведет к быстрому переполнению гликогенного резерва печени, мышц, развитию гиперглюкоземии, глюкозурии. При снижении двигательной активности происходит снижение окислительных процессов и усиление биосинтеза жиров в тканях, что ведет к развитию алиментарного ожирения;

2. при поражении  слизистых оболочек ЖКТ. При  этом в желудке нарушается  образование HCl (гипохлоргидрия или  ахлоргидрия), поступающие углеводы  сбраживаются под влиянием ферментов  микрофлоры с образованием лактата, а белки подвергаются гниению. Это создает благоприятные условия для развития микрофлоры и приводит к расстройству пищеварения в целом. При поражении слизистой тонкого кишечника нарушается гидролиз дисахаридов или всасывание продуктов гидролиза;

3. при поражении  печени нарушается биосинтез  и распад гликогена, глюконеогенез;

4. при поражении  поджелудочной железы нарушается  секреция ферментов (a-амилаз, олиго-1,6-гликозидаз), участвующих в гидролизе крахмала и гликогена.

 

Наиболее грозным  заболеванием ПЖЖ является сахарный диабет. При этом поражаются В-клетки, они перестают вырабатывать гормон инсулин. Инсулин – единственный гормон, обеспечивающий транспорт глюкозы в клетки органов и тканей. В случае недостаточной его выработки или отсутствия вообще происходит нарушение биоэнергетики клеток, органов и тканей. В этом случае интенсивному окислению подвергаются белки и липиды, что сопровождается избыточной продукцией аммиака и Ац-КоА.

Для связывания токсичного аммиака отвлекаются  кетокислоты (ЩУК и a-кетоглутаровая) из ЦТК, их концентрация резко падает, что приводит к снижению интенсивности окислительных процессов. ЦТК не в состоянии окислить все молекулы ацетил-КоА, образование которых увеличивается с усилением окисления белков и липидов. Создаются условия для их конденсации с образованием кетоновых тел. При сахарном диабете в крови наблюдается гиперкетонемия (норма - до 0,1 г/л) и кетонурия.

2СН3-СОSKoA (это ацетил-КоА) ®(Ац-КоА-трансфераза) ацетоацетил-КоА ® (деацилаза, +Н2О, -HS-KoA)  ацетоуксусная кислота.

Ацетоуксусная кислота может превращаться в b-гидроксимасляную кислоту, при этом НАДН2®НАД. Также она может превращаться в ацетон с отщеплением СО2.

 
 
 

В норме содержание кетоновых тел в крови здорового  человека до 0,1 г/л. При поражении  печени нарушается процесс биосинтеза и распада гликогена, процессы глюконеогенеза.

Наследственные  заболевания, как правило, связаны  с нарушением синтеза ферментов, участвующих в метаболизме углеводов. Например, алактазия - неусвояемость углеводов молока (лактозы). Это связано с отсутствием фермента – лактазы, поэтому поступающие с молоком дисахариды не усваиваются. У детей проявляется в виде рвоты, тошноты, поноса, вздутия живота, происходит обезвоживание организма. Лечение: исключение лактозы из пищи и замещение на мальтозу, сахарозу, глюкозу.

Другая группа заболеваний может быть связана  с наследственными нарушениями  обмена гликогена:

1. гликогенозы,  связанные с недостаточным количеством ферментов, участвующих в распаде гликогена (болезнь Гирке, Кори);

2. агликогенозы  – заболевания, связанные с  нарушением синтеза гликогена  (болезнь Льюиса. Андерсона и т.д.).

Информация о работе Шпаргалка по "Биохимии"