Контрольная работа по "Биологии"

Автор работы: Пользователь скрыл имя, 17 Октября 2011 в 20:34, контрольная работа

Краткое описание

Изотонические растворы (от изо... и греч. tónos — напряжение), растворы с одинаковым осмотическим давлением; в биологии и медицине — природные или искусственно приготовленные растворы с таким же осмотическим давлением, как и в содержимом животных и растительных клеток, в крови и тканевых жидкостях. В нормально функционирующих животных клетках внутриклеточное содержимое обычно изотонично внеклеточной жидкости.

Содержание работы

2. Какие растворы называются изотоническими 1
16. Что называется изоэлектрической точкой белка (ИЭБ) 2
22. Основные свойства ферментов 8
34. Биохимические пути обезвреживания токсичных продуктов, образующихся в кишечнике при распаде аминокислот 18
41. Переваривание крахмала в желудочно-кишечном тракте животных 21
54. β – окисление жирных кислот 24
70. Вещества, участвующие в передачи нервного возбуждения 28
Использованная литература 35

Содержимое работы - 1 файл

контрольная по биохимии.docx

— 400.71 Кб (Скачать файл)

    Активация жирных кислот

    Перед тем, как вступить в различные  реакции, жирные кислоты должны быть активированы, т.е. связаны макроэргической  связью с коферментом А:

    RCOOH + HSKoA + АТФ → RCO ~ КоА + АМФ + PPi.

    Реакцию катализирует фермент ацил-КоА син-тетаза. Выделившийся в ходе реакции пирофосфат гидролизуется ферментом пирофосфатазой: Н4Р2О7 + Н2О → 2 Н3РО4.

    Выделение энергии при гидролизе макроэргической  связи пирофосфата смещает равновесие реакции вправо и обеспечивает полноту протекания реакции активации.

    Ацил-КоА синтетазы находятся как в цитозоле, так и в матриксе митохондрий. Эти ферменты отличаются по специфичности к жирным кислотам с различной длиной углеводородной цепи. Жирные кислоты с короткой и средней длиной цепи (от 4 до 12 атомов углерода) могут проникать в матрикс митохондрий путём диффузии. Активация этих жирных кислот происходит в матриксе митохондрий. Жирные кислоты с длинной цепью, которые преобладают в организме человека (от 12 до 20 атомов углерода), активируются ацил-КоА синтетазами, расположенными на внешней мембране митохондрий.

    Транспорт жирных кислот с длинной углеводородной цепью в митохондриях

    β-Окисление  жирных кислот, происходит в матриксе митохондрий, поэтому после активации  жирные кислоты должны транспортироваться внутрь митохондрий. Жирные кислоты  с длинной углеводородной цепью  переносятся через плотную внутреннюю мембрану митохондрий с помощью  карнитина. Карнитин поступает с пищей или синтезируется из незаменимых аминокислот лизина и метионина. В реакциях синтеза карнитина участвует витамин С (аскорбиновая кислота).

    В наружной мембране митохондрий находится  фермент карнитинацилтрансфераза I (карнитин-пальмитоилтрансфераза I), катализирующий реакцию с образованием ацилкарнитина.

    Образовавшийся  ацилкарнитин проходит через межмембранное пространство к наружной стороне внутренней мембраны и транспортируется с помощью карнитинацилкарнитинтранслоказы на внутреннюю поверхность внутренней мембраны митохондрий, где фермент карнитинацилтрансфераза II катализирует перенос ацила на внутримитохондриальный КоА

    Таким образом, ацил-КоА становится доступным для ферментов β-окисления. Свободный карнитин возвращается на цитозольную сторону внутренней

    мембраны  митохондрий той же транслоказой.

    На  внутренней поверхности внутренней мембраны находится фермент карнитинацил трансфераза II, катализирующий обратный перенос ацила с карнитина на внутримитохондриальный КоА. После этого ацил-КоА включается в реакции β-окисления.

    β-Окисление жирных кислот - специфический путь катаболизма жирных кислот, протекающий в матриксе митохондрий только в аэробных условиях и заканчивающийся образованием ацетил-КоА. Водород из реакций β-окисления поступает в ЦПЭ, а ацетил-КоА окисляется в цитратном цикле, также поставляющем водород для ЦПЭ. Поэтому β-окисление жирных кислот - важнейший метаболический путь, обеспечивающий синтез АТФ в дыхательной цепи.

    β-Окисление  начинается с дегидрирования ацил-КоА FAD-зависимой ацил-КоА дегидрогеназой с образованием двойной связи между α- и β-атомами углерода в продукте реакции - еноил-КоА. Восстановленный в этой реакции кофермент FADH2 передаёт атомы водорода в ЦПЭ на кофермент Q. В результате синтезируются 2 молекулы АТФ (рис. 8-27). В следующей реакции р-окисления по месту двойной связи присоединяется молекула воды таким образом, что ОН-группа находится у β-углеродного атома ацила, образуя β-гидроксиацил-КоА. Затем β-гидроксиацил-КоА окисляется NАD+-зависимой дегидрогеназой. Восстановленный NADH, окисляясь в ЦПЭ, обеспечивает энергией синтез 3 молекул АТФ. Образовавшийся β-кетоацил-КоА подвергается тиолитическому расщеплению ферментом тиолазой, так как по месту разрыва связи С-С через атом серы присоединяется молекула кофермента А. В результате этой последовательности из 4 реакций от ацил-КоА отделяется двухуглеродный остаток - ацетил-КоА. Жирная кислота, укороченная на 2 атома углерода, опять проходит реакции дегидрирования, гидратации, дегидрирования, отщепления ацетил-КоА. Эту последовательность реакций обычно называют "циклом β-окисления", имея в виду, что одни и те же реакции повторяются с радикалом жирной кислоты до тех пор, пока вся кислота не превратится в ацетильные остатки.

    Продуктами  каждого цикла  β-окисления являются FADH2, NADH и ацетил-КоА. Хотя реакции в каждом "цикле" одни и те же, остаток кислоты, который входит в каждый последующий цикл, короче на 2 углеродных атома. В последнем цикле окисляется жирная кислота из 4 атомов углерода, поэтому образуются 2 молекулы ацетил-КоА, а не 1, как в предыдущих. Суммарное уравнение β-окисления, например пальмитоил-КоА может быть представлено таким образом:

    С15Н31СО-КоА + 7 FAD + 7 NAD+ + 7 HSKoA → 8 СН3-СО-КоА + 7 FADH2 + 7 (NADH + H+).

    β-Окисление - метаболический путь, прочно связанный  с работой ЦПЭ и общего пути катаболизма. Поэтому его скорость регулируется потребностью клетки в  энергии, т.е. соотношениями АТФ/АДФ  и NADH/NAD+, так же, как и скорость реакций ЦПЭ и общего пути катаболизма. Скорость β-окисления в тканях зависит от доступности субстрата, т.е. от количества жирных кислот, поступающих в митохондрии. Концентрация свободных жирных кислот в крови повышается при активации липолиза в жировой ткани при голодании под действием глюкагона и при физической работе под действием адреналина. В этих условиях жирные кислоты становятся преимущественным источником энергии для мышц и печени, так как в результате β-окисления образуются NADH и ацетил-КоА, ингибирующие пируватдегидрогеназный комплекс. Превращение пирувата, образующегося из глюкозы, в ацетил-КоА замедляется. Накапливаются промежуточные метаболиты гликолиза и, в частности, глюкозо-6-фосфат. Глюкозо-6-фосфат ингибирует гексокиназу и, следовательно, препятствует использованию глюкозы в процессе гликолиза. Таким образом, преимущественное использование жирных кислот как основного источника энергии в мышечной ткани и печени сберегает глюкозу для нервной ткани и эритроцитов.

    Ма́сляная кислота́ (бута́новая кислота́) С3Н7СООН – бесцветная жидкость с запахом прогорклого масла. Соли и эфиры масляной кислоты называются бутиратами.

    Масляная  кислота имеет два изомера:

    н-бутановая кислота СН3–СН2–СН2–СООН (температура кипения 163.5°C, температура плавления –7.9°C);

    2-метилпропановая  кислота (изобутановая кислота) СН3–СH(СН3)–СООН (температура кипения 155°C);

    СН3–СН2–СН2–СООН

    Превращение масляной кислоты в два ацетил КоА

    СН3–СН2–СН2–СООН →СН3СОСН2СО–SКоА + Н–SКоА→2СН3СО–SКоА

    В клетках две молекулы ацетил-КоА реагируют с образованием ацетоацетил-КоА: 2СН3СО–SКоА ® СН3СОСН2СО–SКоА + Н–SКоА. Затем ферменты восстанавливают это соединение до производного масляной кислоты – бутирил-КоА с четырьмя атомами углерода СН3СН2СН2СО–SКоА,  

    70.  Вещества, участвующие в передачи нервного возбуждения

    Напишите  уравнение реакции  гидролиза ацетилхолина

    Нервная ткань имеет общие черты, которые присущи клеткам любой ткани, а также специфические особенности, определяемые характером функций, выполняемых нервной системой в целостном организме. Эти особенности проявляются как в химическом составе, так и в характере метаболизма нервной ткани.

    Функции липидов нервной ткани следующие.

    Структурная: входят в состав клеточных мембран нейронов.

    Функция диэлектриков (обеспечивают надежную электрическую изоляцию).

    Защитная. Ганглиозиды являются очень активными антиоксидантами - ингибиторами перекисного окисления липидов (ПОЛ). При повреждении ткани мозга ганглиозиды способствуют ее заживлению.

    Регуляторная. Фосфатидилинозиты являются предшественниками биологически активных веществ.

    Большая часть липидов нервной ткани  находится в составе плазматических и субклеточных мембран нейронов и в миелиновых оболочках. В нервной  ткани по сравнению с другими  тканями организма содержание липидов  очень высокое.

    Особенность липидного состава нервной ткани: есть фосфолипиды (ФЛ), гликолипиды (ГЛ) и холестерин (ХС), нет нейтральных жиров. Эфиры холестерина можно встретить только в участках активной миелинизации. Сам холестерин синтезируется интенсивно только в развивающемся мозге. В мозге взрослого человека низка активность ОМГ-КоА-редуктазы - ключевого фермента синтеза холестерина. Содержание свободных жирных кислот в мозге очень низкое.

    Некоторые нейромедиаторы после взаимодействия со специфическими рецепторами изменяют свою конформацию и изменяют конформацию фермента фосфолипазы С, которая катализирует расщепление связи в фосфатидилинозите между глицерином и остатком фосфата, в результате чего образуется фосфоинозитол и диацилглицерин. Эти вещества являются регуляторами внутриклеточного метаболизма. Диацилглицерин активирует протеинкиназу С, а фосфоинозитол вызывает повышение концентрации Са2+. Ионы кальция влияют на активность внутриклеточных ферментов и участвуют в работе сократительных элементов нервных клеток: микрофиламентов, что обеспечивает передвижение различных веществ в теле нервной клетки, аксоне и растущем кончике аксона. Протеинкиназа С участвует в реакциях фосфорилирования белков внутри нервных клеток. Если это белки-ферменты, то меняется их активность, если это рибосомальные или ядерные белки, то изменяется скорость биосинтеза белков.

    Липиды  постоянно обновляются. Скорость их обновления различна, но в целом низка. Некоторые липиды(например: холестерин, цереброзиды, фосфатидилэтаноламины, сфингомиелины) обмениваются медленно - в течение месяцев и даже лет. Исключение составляют фосфатидилхолин и, особенно, фосфатидилинозиты (содержат глицерин, фосфат, спирт (инозит), жирные кислоты) - они обмениваются очень быстро (сутки, недели).

    Синтез  цереброзидов и ганглиозидов протекает с большой скоростью в развивающемся мозге в период миелинизации. У взрослых почти все цереброзиды (до 90 %) находятся в миелиновых оболочках, а ганглиозиды - в нейронах.

    Нуклеиновые кислоты. Нервные клетки не делятся, значит, не происходит синтез ДНК. Однако, содержание РНК в них самое высокое по сравнению с клетками остальных тканей организма. Скорость синтеза РНК тоже очень велика.

    В клетках нервной ткани не могут  синтезироваться пиримидины (в нервной  ткани отсутствует фермент карбамоилфосфатсинтаза). Пиримидины обязательно должны поступать из крови - гематоэнцефалический барьер для них проницаем. Гематоэнцефалический барьер легко проницаем и для пуриновых мононуклеотидов, но, в отличие от пиримидиновых, они могут синтезироваться в нервной ткани.

    В нервной ткани, так же, как и  в других, нуклеиновые кислоты  обеспечивают хранение и передачу генетической информации и ее реализацию при синтезе клеточных белков.

    Например, сильные раздражители: громкие звуки, сильные зрительные стимулы и  эмоции приводят к повышению скорости синтеза и РНК, и белка в  определенных участках мозга. Это указывает  на то, что изменения в нервной  системе, отражающие индивидуальный опыт организма, кодируются в виде синтезированных  макромолекул.

    Информация, благодаря которой нейроны устанавливают  только определенные связи с определенными  нейронами, кодируется в структуре  полисахаридных веточек мембранных гликопротеинов. Образование таких связей, не заложенных в период эмбрионального развития, является результатом опыта индивидуального организма и составляет материальную основу для хранения информации, определяющей особенности поведения данного организма.

    Метаболизм  углеводов и особенности энергетического  обеспечения нервной ткани 
В нервной ткани, составляющей только 2 % от массы тела человека, потребляется 20 % кислорода, поступающего в организм.

Информация о работе Контрольная работа по "Биологии"