Автор работы: Пользователь скрыл имя, 07 Января 2012 в 22:50, курсовая работа
Клетка - основной компонент, из которого состоят все растительные и животные ткани. Клетка является наименьшей живой частицей, способной существовать независимо и обладающей собственной саморегулирующейся химической системой. Большинство клеток состоит из мембран, окружающей желеобразную массу цитоплазмы, и расположенного в центре ядра. Ядро является основой всей структуры, в нем находятся хромосомы, содержащие ДНК. Животные клетки отличаются разнообразием форм. Например, эритроцит (красное кровяное тельце) представляет собою двояковогнутый диск, а нейрон - это длинное волокно. Клетки растений и водорослей заключены внутри стенки, что придает им большую жесткость. Клетки бактерий также имеют стенки, но лишены ядра и хромосом; у них петля ДНК плавает в цитоплазме. Более развитые клетки (имеющие ядра) часто содержат внутри мембраны также другие структуры, например, митохондрии и хлоропласты.
Клетка – элементарная единица жизни на Земле. Она обладает всеми признаками живого организма: растет, размножается, обменивается с окружающей средой веществами и энергией, реагирует на внешние раздражители.
Начало биологической эволюции связано с появлением на Земле клеточных форм жизни.
Одноклеточные организмы представляют собой существующие отдельно друг от друга клетки. Тело всех многоклеточных – животных и растений – построено из большего или меньшего числа клеток, которые являются своего рода блоками, составляющими сложный организм. Независимо от того, представляет ли собой клетка целостную живую систему – отдельный организм или составляет лишь его часть, она наделена набором признаков и свойств, общим для всех клеток.
Введение...............................................................................................................3
Глава 1 Химическая организация клетки..........................................................4
1.1 Неорганические вещества.............................................................................7
1.2 Органические вещества.................................................................................9
Глава 2 Структура мембран...............................................................................16
2.1 Липидный состав..........................................................................................17
2.2 Организация мембранных липидов......................................................19
2.3 Мембранные белки................................................................................20
2.4 Жидкостно-мозаичная модель мембран...............................................24
Заключение.........................................................................................................27
Список используемой литературы..................................................................28
Второй
класс фосфолипидов представлен сфингомиелинами,
содержащими остаток сфингозина вместо
глицерола. Жирная кислота присоединена
к аминогруппе сфингозина амидной связью.
Первичная гидроксильная группа сфингозина
этерифицирована фосфорилхолином . Сфингомиелины,
как следует из их названия, входят в состав
миелиновой оболочки.
Гликосфинголипиды
Гликосфинголипиды—это липиды, содержащие остатки Сахаров. Сюда входят цереброзиды и ганглиозиды, а также производные сфингозина. Цереброзиды и ганглиозиды отличаются от сфингомиелина тем, какие группы присоединены к первичной гидроксильной группе сфингозина. В сфингомиелине к спиртовой группе присоединен фосфохолин, а цереброзид содержит в этом положении остаток гексозы, глюкозы или галактозы . Ганглиозид содержит цепочку из трех и более сахаров, причем по крайней мере один из них — это сиаловая кислота, связанная с первичной спиртовой группой сфингозина.
Стеролы
Наиболее распространенным стеролом в мембранах является холестерол, который содержится почти исключительно в плазматической мембране клеток млекопитающих, но в меньшем количестве может присутствовать также в митохондриях, мембранах аппарата Гольджи и ядерных мембранах. Содержание холестерола обычно увеличивается в направлении к наружной стороне плазматической мембраны. Холестерол встраивается между фосфолипидными молекулами, причем его гидроксильная группа контактирует с водной фазой, а остальная часть располагается внутри гидрофобного слоя. При температуре выше температуры фазового перехода его жесткое стерольное кольцо взаимодействует с ацильными группами фосфолипидов, ограничивая их подвижность; это приводит к уменьшению текучести мембран. С другой стороны, при температурах, близких к температуре фазового перехода, взаимодействие холестерола с ацильными цепями препятствует их взаимному упорядочиванию. В результате снижается температура, при которой происходит переход жидкость—гель, а это помогает поддерживать текучесть мембраны при более низких температурах.
Амфифильная природа мембран
Все основные липиды мембран содержат как гидрофобные, так и гидрофильные области и поэтому называются амфифильными соединениями. Таким образом, мембраны тоже амфифильны. Если бы основу молекулы составляли гидрофобные группы, она была бы нерастворима в воде и растворима в маслах. Напротив, если бы основу молекулы составляли гидрофильные участки, то она была бы нерастворима в маслах и растворима в воде. Амфифильные мембранные липиды содержат полярную «головку» и неполярные «хвосты» . Насыщенные жирнокислотные «хвосты» находятся в вытянутой конформации, а ненасыщенные, находящиеся в мембране в основном в форме, могут иметь изломы. Чем больше таких изломов, тем менее плотна упаковка липидов в мембране и соответственно тем больше ее текучесть. Важную роль в биохимии и быту играют такие амфифильные соединения, как детергенты. Их структура не так уж далека от структуры липидов.
2.2 Организация мембранных липидов
Амфифильный характер фосфолипидов означает, что две области молекулы по своей растворимости противоположны, поэтому в водных растворителях фосфолипиды самоорганизуются в особую структуру, обеспечивающую термодинамическую стабильность обеих областей. Этой структурой является мицелла: ее гидрофобные области защищены от воды, а гидрофильные экспонированы в водную среду.
Липидный бислой
Примерно 60 лет назад Гортер и Грендел установили, что амфифильные молекулы образуют в водной среде термодинамически стабильный бимолекулярный слой (бислой). Бислой—это плоская структура, в которой гидрофобные области фосфолипидов недоступны для воды, а гидрофильные в нее погружены . В неблагоприятное водное окружение экспонирован только край (или края) бислоя, но даже этот край можно ликвидировать, если плоскость замкнуть на себя, чтобы образовалась замкнутая везикула. Замкнутый бислой обеспечивает одно из основных свойств мембраны: он непроницаем для большинства водорастворимых молекул, поскольку они не растворяются в его гидрофобной сердцевине. Такие газы, как кислород, СО2 и азот, с малым размером молекул и слабо взаимодействующие с растворителями, легко диффундируют через гидрофобную область мембраны. Молекулы липидной природы, например стероидные гормоны, тоже без труда проникают через бислой. Скорость диффузии органических незаряженных молекул пропорциональна их коэффициенту распределения между маслом и водой; чем больше растворимость молекулы в липидах, тем больше скорость ее диффузии через мембрану. Трансмембранные градиенты концентраций таких веществ поддерживаются тем,что мембраны содержат белки, а белки также являются амфифильными молекулами и могут соответствующим образом встраиваться в бислой. Эти белки формируют каналы, по которым могут перемещаться ионы и малые молекулы, а также служат переносчиками для больших молекул, которые другим способом не могут пересечь бислой.
2.3 Мембранные белки
Белки, ассоциированные с бислоем
Мембранные фосфолипиды играют роль растворителя для мембранных белков, создавая микроокружение, в котором последние могут функционировать. Из 20 аминокислот, входящих в состав белков, шесть являются в высшей степени гидрофобными из-за боковых групп, присоединенных к а-атому углерода, несколько аминокислот слабо гидрофобны, а остальные гидрофильны. При образовании а-спирали гидрофобность самих пептидных групп минимизируется. Таким образом, белки могут образовывать единое целое с мембраной. Для этого нужно, чтобы их гидрофильные участки выступали из мембраны внутрь клетки и наружу, а гидрофобные пронизывали гидрофобную сердцевину бислоя. И в самом деле, те участки белковых молекул, которые погружены в мембрану, содержат большое количество гидрофобных аминокислот и характеризуются высоким содержанием а- спиралей или C-слоев.
Число разных белков в мембране варьирует от 6—8 в саркоплазматическом ретикулуме до более чем 100 в плазматической мембране. Это ферменты транспортные белки,структурные белки, антигены (т.е. белки, определяющие гистосовместимость) и рецепторы для разных молекул. Поскольку каждая мембрана характеризуется своим набором белков, говорить о существовании некой типичной структуры мембран нельзя.
Мембраны являются динамическими структурами. Мембранные белки и липиды постоянно обновляются. Скорости обновления разных липидов, как и разных белков, варьируют в широком диапазоне. Сами мембраны могут обновляться даже быстрее, чем любой их компонент. Более подробно этот вопрос будет рассмотрен в разделе, посвященном эндоцитозу.
Асимметрия мембран
Асимметрия является важным свойством мембран и, по-видимому, отчасти связана с неравномерным распределением белков в мембране. Трансмембранная асимметрия может быть обусловлена и разной локализацией углеводов, связанных с мембранными белками. Кроме того, на внешней или внутренней стороне мембраны могут быть расположены какие-то специфические ферменты; это касается как митохондриальных, так и плазматических мембран.
Мембраны обладают также локальной асимметрией. В некоторых случаях (например, в щеточной каемке клеток слизистых оболочек) она проявляется почти на макроскопическом уровне. В других случаях (например, в области щелевых контактов, плотных контактов и синапсов, занимающих очень небольшую часть площади мембраны) области локальной асимметрии невелики. Наблюдается также асимметрия в распределении фосфолипидов между наружной и внутренней сторонами мембран (поперечная асимметрия). Так, холинсодержащие фосфолипиды (фосфатидилхолин и сфингомиелин) располагаются в основном в наружном молекулярном слое, а аминофосфолипиды (фосфатидилсерин и фосфатидилэтаноламин) — преимущественно во внутреннем. Холестерол обычно содержится в наружном слое в больших количествах, чем во внутреннем. Очевидно, что если такая асимметрия в принципе существует, то поперечная подвижность (флип-флоп) мембранных фосфолипидов должна быть ограничена. И в самом деле, для фосфолипидов в синтетических бислоях характерна исключительно низкая скорость перескоков — время существования асимметрии может измеряться днями или неделями. Однако при искусственном включении в синтетические бислои некоторых мембранных белков, например эритроцитарного белка гликофорина, частота флип-флоп-переходов фосфолипидов может возрасти в сотню раз.
Механизмы асимметричного распределения липидов пока не установлены. Участвующие в синтезе фосфолипидов ферменты локализованы на цитоплазматической стороне мембран микросомных везикул. Таким образом, можно предположить, что существуют транслоказы, переносящие определенные фосфолипиды от внутреннего слоя к наружному. Кроме того, в обоих слоях могут присутствовать специфические белки, преимущественно связывающие те или иные фосфолипиды и приводящие к их асимметричному распределению.
Интегральные и периферические мембранные белки
Большинство мембранных белков являются интегральными компонентами мембран (они взаимодействуют с фосфолипидами); почти все достаточно полно изученные белки имеют протяженность, превышающую 5—10 нм,— величину, равную толщине бислоя. Эти интегральные белки обычно представляют собой глобулярные амфифильные структуры. Оба их конца гидрофильны, а участок, пересекающий сердцевину бислоя, гидрофобен. После установления структуры интегральных мембранных белков стало ясно, что некоторые из них (например, молекулы белков-переносчиков) могут пересекать бислой многократно. Интегральные белки распределены в бислое Асимметрично. Если мембрану, содержащую асимметрично распределенные интегральные белки, растворить в детергенте, а затем детергент медленно удалить, то произойдет самоорганизация фосфолипидов и интегральных белков и сформируется мембранная структура, но белки в ней уже не будут специфическим образом ориентированы. Таким образом, асимметричная ориентация в мембране по крайней мере некоторых белков может задаваться при их включении в липидный бислой. Наружная гидрофильная часть амфифильного белка, которая, конечно, синтезируется внутри клетки, должна затем пересечь гидрофобный слой мембраны и в конечном итоге оказаться снаружи.
Периферические белки не взаимодействуют с фосфолипидами в бислое непосредственно; вместо этого они образуют слабые связи с гидрофильными участками специфических интегральных белков. Например, анкирин, периферический белок, связан с интегральным белком полосы III эритроцитарной мембраны. Спектрин, образующий скелет мембраны эритроцита, в свою очередь связан с анкирином и, таким образом, играет важную роль в поддержании двояковогнутой формы эритроцита. Молекулы иммуноглобулина являются интегральными белками плазматической мембраны и высвобождаются только вместе с небольшим фрагментом мембраны. Инегральными белками являются многие рецепторы различных гормонов, и специфические полипептидные гормоны, связывающиеся с этими рецепторами, можно, таким образом, считать периферическими белками. Такие периферические белки, как пептидные гормоны, могут даже детерминировать распределение в плоскости бислоя интегральных белков — их рецепторов.
2.4 Жидкостно-мозаичная модель мембран
Функционирующие мембраны представляют собой двумерный раствор глобулярных интегральных белков, диспергированных в жидком фосфолипидном матриксе. Жидкостно-мозаичная модель мембранной структуры была предложена в 1972 г. Сингером и Николсоном . Первые данные об адекватности этой модели были получены при искусственно индуцированном слиянии двух разных родительских клеток. Оказалось, что при образовании межвидовой гибридной клетки в плазматической мембране происходит быстрое стохастическое перераспределение видоспецифичных белков. Впоследствии было показано, что фосфолипиды тоже способны быстро перераспределяться в плоскости мембраны. Такая диффузия в плоскости мембраны, называемая латеральной, может осуществляться довольно быстро: одна молекула фосфолипида перемещается за 1 с на расстояние несколько микрометров.
Фазовые переходы и, следовательно, текучесть мембран сильно зависят от липидного состава мембран. В липидном бислое гидрофобные цепочки жирных кислот ориентированы практически параллельно друг другу, в результате чего образуется достаточно жесткая структура. При повышении температуры гидрофобный слой переходит из упорядоченного состояния в неупорядоченное, и образуется более жидкая, текучая система. Температура, при которой вся структура претерпевает переход из упорядоченного состояния в беспорядочное, называется температурой перехода. Более длинные и более насыщенные жирнокислотные цепи обладают более высокой температурой перехода, т.е. для повышения текучести образованной ими структуры необходима более высокая температура. Наличие ненасыщенных связей в цис-конфигурации приводит к повышению текучести бислоя из-за снижения компактности упаковки цепей без изменения гидрофобности. Фосфолипиды клеточных мембран обычно содержат по крайней мере одну ненасыщенную жирную кислоту, имеющую по крайней мере одну двойную связь в цис-положении.
Холестерол играет роль молекулярного модификатора мембран, включение которого приводит к образованию состояний с промежуточной текучестью. Если специацильные боковые цепи находятся в неупорядоченном состоянии, то холестерол вызывает их конденсацию; если же они образуют какую-то кристаллоподобную структуру, то холестерол переводит ее в неупорядоченное состояние. При высоком отношении холестерол/липид фазовый переход вообще не происходит.
Текучесть мембраны сильно влияет на ее функционирование. При увеличении текучести мембрана становится более проницаемой для воды и других малых гидрофильных молекул, растет скорость латеральной диффузии интегральных белков. Если активный центр интегрального белка, осуществляющий некую функцию, располагается исключительно в гидрофильной его части, то изменение текучести липидов, вероятно, не скажется слишком сильно на активности белка. Но если белок выполняет транспортную функцию и транспортный компонент пересекает мембрану, то изменения свойств липидной фазы могут привести к значительному изменению скорости транспорта. Превосходным примером является зависимость функционирования инсулинового рецептора от текучести мембран. Когда концентрация ненасыщенных жирных кислот в мембране растет (при культивировании клеток в среде, богатой этими соединениями), увеличивается текучесть, а это приводит к тому, что рецептор связывает больше инсулина.