Бактерии, их строение и процессы

Автор работы: Пользователь скрыл имя, 13 Ноября 2011 в 00:37, реферат

Краткое описание

Бактерии - это обширная группа одноклеточных микроорганизмов, характеризующихся отсутствием окруженного оболочкой клеточного ядра. Вместе с тем генетический материал бактерии (дезоксирибонуклеиновая кислота, или ДНК) занимает в клетке вполне определенное место – зону, называемую нуклеоидом. Организмы с таким строением клеток называются прокариотами («доядерными») в отличие от всех остальных – эукариот («истинно ядерных»), ДНК которых находится в окруженном оболочкой ядре.

Содержимое работы - 1 файл

РЕФЕРАТ.doc

— 430.00 Кб (Скачать файл)

    Сбраживание сахаров известно с глубокой древности. В течение столетий пивовары и виноделы использовали способность некоторых дрожжей вызывать спиртовое брожение, в результате которого сахара превращаются в спирт.

  Брожение производят главным образом дрожжи, а также некоторые бактерии и грибы. В различных странах для получения спирта используют различные микроорганизмы. Например, в Европе используют в основном дрожжи из рода Saccharomyces, в Южной Америке — бактерии Pseudomonas lindneri, в Азии — мукоровые грибы.

     Сбраживаться могут лишь углеводы, и притом весьма избирательно. Дрожжи сбраживают только некоторые 6-углеродные сахара (глюкозу, фруктозу, маннозу).

      Схематично спиртовое брожение может быть изображено уравнением

                    С6Н12О6 -> 2С2Н5ОН + 2С02 + 23,5 • 104 Дж

     Процесс спиртового брожения — многоступенчатый, состоящий из цепи химических реакций. Превращения глюкозы до образования пировиноградной кислоты происходят так же, как и при дыхании. Эти реакции происходят без участия кислорода (анаэробно). Далее пути дыхания и брожения расходятся.

     При спиртовом брожении пировиноградная кислота превращается в конечном итоге в спирт и углекислоту. Эти реакции протекают в две стадии. Сначала от пирувата отщепляется С02 и образуется уксусный альдегид; затем уксусный альдегид присоединяет водород, восстанавливаясь в этиловый спирт. Все реакции катализируются ферментами. В восстановлении альдегида участвует НАД-H2.

    Обычно при спиртовом брожении, кроме главных продуктов, образуются побочные. Они довольно разнообразны, но присутствуют в небольшом количестве: амиловый, бутиловый и другие спирты, смесь которых называется сивушным маслом — соединение, от которого зависит специфический аромат вина. Образование побочных веществ связано с тем, что превращение глюкозы частично идет другими путями.

    Биологический смысл спиртового брожения заключается в том, что образуется определенное количество энергии, которая запасается в форме АТФ, а затем расходуется на все жизненно необходимые процессы клетки.

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Молочнокислое брожение.

       При молочнокислом брожении конечным продуктом является молочная кислота. С этим брожением люди знакомы издавна. Сквашивание молока, приготовление простокваши, кефира, квашение овощей — результаты молочнокислого сбраживания сахара молока или углеводов растений. Этот вид брожения осуществляется с помощью молочнокислых бактерий, которые подразделяются на две большие группы (в зависимости от характера брожения): гомоферментативные, образующие из сахара только молочную кислоту, и гетероферментативные, образующие, кроме молочной кислоты, спирт, уксусную кислоту, углекислый газ.

     Гомоферментативное молочнокислое брожение вызывают бактерии рода Lactobacillus и стрептококки. Они могут сбраживать различные сахара с 6-ю (гексозы) или 5-ю (пентозы) углеродными атомами, некоторые кислоты. Однако круг сбраживаемых ими продуктов ограничен.

    У молочнокислых бактерий нет ферментативного аппарата для использования кислорода воздуха. Кислород для них или безразличен, или угнетает развитие.

         Молочнокислое брожение может быть описано уравнением

                     С6Н12О6 -> 2СН3*CНОН*СООН+21,8-104 Дж

      Процесс образования молочной кислоты чрезвычайно близок к процессу спиртового брожения. Глюкоза также расщепляется до пировиноградной кислоты. Но затем ее декарбоксилирование (отщепление С02), как при спиртовом брожении, не происходит, так как молочнокислые бактерии лишены соответствующих ферментов. У них активны дегидрогеназы (НАД). Поэтому пировиноградная кислота сама (а не уксусный альдегид, как при спиртовом брожении) принимает водород от восстановленной формы НАД и превращается в молочную кислоту. В процессе молочнокислого брожения бактерии получают энергию, необходимую им для развития в анаэробных условиях, где использование других источников энергии затруднено.

     Гетероферментативное молочнокислое брожение — процесс более сложный, чем гомоферментативное: сбраживание углеводов приводит к образованию ряда соединений, накапливающихся в зависимости от условий процесса брожения. Одни бактерии образуют, помимо молочной кислоты, этиловый спирт и углекислоту, другие — уксусную кислоту; некоторые гетероферментативные молочнокислые бактерии могут образовывать различные спирты, глицерин, маннит.

    Гетероферментативное молочнокислое брожение вызывают бактерии рода Lactobacterium и рода Streptococcus. Химизм этих брожений изучен не так хорошо, как спиртового или гомо-ферментативного молочнокислого брожения.

      Гетероферментативные бактерии образуют молочную кислоту иным путем. Последняя стадия — восстановление пировиноградной кислоты до молочной — та же самая, что и в случае гомоферментативного брожения. Но сама пировиноградная кислота образуется при ином расщеплении глюкозы — гексозомонофосфатном. Выход энергии гораздо меньше, чем при спиртовом брожении.

     Гетероферментативные бактерии сбраживают ограниченное число веществ: некоторые гексозы (причем определенного строения), пентозы, сахароспирты и кислоты.

   Молочнокислое брожение широко используется при выработке молочных продуктов: простокваши, ацидофилина, творога, сметаны. При производстве кефира, кумыса наряду с молочнокислым брожением, вызываемым бактериями, имеет место и спиртовое брожение, вызываемое дрожжами. Молочнокислое брожение происходит на первом этапе изготовления сыра, затем молочнокислые бактерии сменяются пропионовокислыми.

    Молочнокислые бактерии нашли широкое применение при консервировании плодов и овощей, в силосовании кормов. Чистое молочнокислое брожение применяется для получения молочной кислоты в промышленных масштабах.

     Молочная кислота находит широкое применение в производстве кож, красильном деле, при выработке стиральных порошков, изготовлении пластмасс, в фармацевтической промышленности и во многих других отраслях. Молочная кислота также нужна в кондитерской промышленности и для приготовления безалкогольных напитков. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Маслянокислое брожение.

      Превращение углеводов с образованием масляной кислоты было известно давно. Природа маслянокислого брожения как результат жизнедеятельности микроорганизмов была установлена Луи Пастером в 60-х годах прошлого века. Возбудителями брожения являются маслянокислые бактерии, получающие энергию для жизнедеятельности путем сбраживания углеводов. Они могут сбраживать разнообразные вещества — углеводы, спирты и кислоты, способны разлагать и сбраживать даже высокомолекулярные углеводы — крахмал, гликоген, декстрины.

     Маслянокислое брожение в общем виде описывается уравнением

                     C6H12О6 -> СН3*CН2*СООН+2С02+2Н2

     При этом брожении накапливаются различные побочные продукты. Наряду с масляной кислотой, углекислым газом и водородом образуются этиловый спирт, молочная и уксусная кислоты.

     Некоторые маслянокислые бактерии, кроме того, образуют ацетон, бутанол и изопропиловый спирт.

    Брожение начинается с процесса фосфорилирования глюкозы и далее идет по гликолитическому пути до стадии образования пировиноградной кислоты. Затем образуется уксусная кислота, которая активируется ферментом. После чего при конденсации (соединении) из двухуглеродного соединения получается четырехуглеродная масляная кислота. Таким образом, при маслянокислом брожении происходит не только разложение веществ, но и синтез.

   По данным В. Н. Шапошникова, в маслянокислом брожении различаются две фазы. В первой параллельно с увеличением биомассы накапливается уксусная кислота, а масляная кислота образуется преимущественно во второй фазе, когда синтез веществ тела замедляется.

     Маслянокислое брожение происходит в природных условиях в гигантских масштабах: на дне болот, в заболоченных почвах, илах и всех тех местах, куда ограничен доступ кислорода. Благодаря деятельности маслянокислых бактерий разлагаются огромные количества органического вещества.

    Спиртовое, гомоферментативное молочнокислое и маслянокислое брожения являются основными типами брожений. Все другие виды брожений представляют собой комбинацию этих трех типов. Так, например, пропионовокислое брожение, играющее важную роль при производстве сыров и сопровождающееся накоплением пропионовой и уксусной кислот и углекислого газа, может рассматриваться как комбинация гомоферментативного молочнокислого и спиртового брожений. Брожения клетчатки и пектиновых веществ являются разновидностями маслянокислого брожения.

    Итак, три основных типа брожения органически связаны между собой — начальные пути разложения углеводов у них одинаковы.

    Процессы дыхания и брожения являются основными источниками энергии, необходимой микроорганизмам для нормальной жизнедеятельности, осуществления процессов синтеза важнейших органических соединений.

   

     
 
 

  
 
 
 
 
 

     Бактериальный фотосинтез и общее уравнение фотосинтеза

      Наряду с фотосинтезом высших растений и водорослей, сопровождаемым выделением кислорода, в природе осуществляется бактериальный фотосинтез, в котором окисляемым субстратом является не вода, а другие соединения, обладающие более выраженными восстановительными свойствами, например H2S, SO2. Кислород при бактериальном фотосинтезе не выделяется, например:

                            

    Фотосинтезирующие бактерии способны использовать не только видимое, но и ближнее ИК излучение (до 1000 нм) в соответствии со спектрами поглощения преобладающих в них пигментов - бактериохлорофиллов. Бактериальный фотосинтез не имеет существенного значения в глобальном запасании солнечной энергии, но важен для понимания общих механизмов фотосинтеза Кроме того, локально бескислородный фотосинтез может вносить существенный вклад в суммарную продуктивность планктона. Так, в Черном море количество хлорофилла и бактериохлорофилла в столбе воды в ряде мест приблизительно одинаково.

   Учитывая данные о фотосинтезе высших растений, водорослей и фотосинтезирующих бактерий, обобщенное уравнение фотосинтеза можно записать в виде:

                                

А - кислород в случае высших растений и водорослей, S либо другие элементы - в бактериальном фотосинтезе.

      
 

 

Список использованной литературы

  1. Микробиология: учебник для студ. биол. специальностей вызов / М. В. Гусев, Л. А. Минеева, 2008;
  2. Современная микробиология. Прокариоты: в 2 томах. Т. 1. Пер. с англ./Под ред. Й. Ленгелера, Г. Древса, Г. Шлегеля, 2005;
  3. http://www.berl.ru/article/small/bacter/brogenie.htm
  4. http://www.berl.ru/article/small/bacter/dyhanie_bakterii.htm
  5. http://www.chemport.ru/chemical_encyclopedia_article_4119.html
  6. Акатов А.К., Зуева В.С. Стафилококки, 2003;
  7. Руководство по инфекционным болезням. / Под ред. В.И. Покровского, К.М. Лобана, 2006;
  8. Фомина И.П. Рациональная антибиотикотерапия, 2002;
  9. Шендеров Б.А. Медицинская микробиология и функциональное питание. Т.1. Микрофлора человека и животных и ее функции. 1998;
  10. Шлегель Г. Общая микробиология. 1987;

Информация о работе Бактерии, их строение и процессы