Строение и эволюция солнечной системы

Автор работы: Пользователь скрыл имя, 14 Апреля 2013 в 20:49, контрольная работа

Краткое описание

Весь дальнейший процесс развития вселенной связан с термоядерным синтезом идущим в звездах. Эволюционируя, звезды образуют такие объекты как нейтронные звезды, белые карлики, черные дыры, туманности. Из материала взорвавшихся звезд формируются планеты и другие малые космические тела. Так будет еще несколько десятков миллионов лет пока не прекратятся все термоядерные реакции.
Далее мы рассмотрим все стадии образования вселенной более подробно и так же рассмотрим что содержит в себе эта огромная, невообразимая человеческому воображению вселенная.

Содержание работы

Введение 3
1. Эволюция вселенной 4
1.1. Теория большого взрыва 6
1.2. Реликтовое излучение 7
1.3. Темная эпоха 8
1.4. Первые звезды 9
1.5. Слияние протогалактик 10
1.6. Раздутая Вселенная 11
1.7. Вселенные рождались не однажды 12
2. Строение вселенной 15
2.1. Темная материя 15
2.2. Темна энергия 17
2.3. Черные дыры 18
2.3.1. Черные дыры со звездной массой 19
2.3.2. Сверхмассивные черные дыры 20
2.4. Галактики 20
2.4.1. Карлики и гиганты 21
2.4.2. Рождение галактик 22
2.4.3. Звездное расселение 23
2.4.4. Млечный путь 24
2.4.5. Форма и содержание 24
2.4.6. Столкновение галактик 25
2.5. Квазары 27
2.6. Сверхновые звезды 28
2.7. Кометы 31
2.8. Белые карлики 32
2.9. Астероиды 33
Заключение 34
Список используемой литературы: 35

Содержимое работы - 1 файл

Научная работа строение и эволюция вселенной.docx

— 1.19 Мб (Скачать файл)

10–33 см — они в миллиарды раз мельче протона. На данный момент у нас нет каких-либо надежд на экспериментальную проверку даже самого факта существования таких черных дыр-частиц, не говоря уже о том, чтобы хоть как-то исследовать их свойства.

2.3.2. Сверхмассивные черные дыры

В центре нашего Млечного Пути и других галактик располагается невероятно массивная черная дыра в миллионы раз тяжелее Солнца. Эти сверхмассивные черные дыры (такое название они получили) были обнаружены по наблюдениям за характером движения межзвездного газа вблизи центров галактик. Газы, судя по наблюдениям, вращаются на близком удалении от сверхмассивного объекта, и простые расчеты с использованием законов механики Ньютона показывают, что объект, притягивающий их, при мизерном диаметре обладает чудовищной массой. Так закрутить межзвездный газ в центре галактики может только черная дыра. Фактически астрофизики нашли уже десятки таких массивных черных дыр в центрах соседних с нашей галактик, и сильно подозревают, что центр любой галактики — суть черная дыра.

2.4. Галактики

Галактики наблюдали с  незапамятных времен. Человек с острым зрением может различить на ночном небосводе светлые пятна, похожие  на капли молока. В Х веке персидский астроном Абд-аль-Раман аль-Суфи упомянул в своей «Книге о неподвижных звездах» два подобных пятна, известных теперь как Большое Магелланово облако и галактика М31, она же Андромеда. С появлением телескопов астрономы наблюдали все больше таких объектов, получивших название туманностей. Если английский астроном Эдмунд Галлей в 1716 году перечислил всего шесть туманностей, то каталог, опубликованный в 1784 году астрономом французского военно-морского флота Шарлем Мессье, содержал уже 110 — и среди них четыре десятка настоящих галактик (в том числе и М31). В 1802 году Уильям Гершель опубликовал перечень из 2500 туманностей, а его сын Джон в 1864 году издал каталог, где было более 5000 туманностей.


Природа этих объектов долгое время ускользала от понимания. В середине XVIII века некоторые проницательные умы увидели в них звездные системы, подобные Млечному Пути, однако телескопы в то время не предоставляли возможности проверить эту гипотезу. Столетием позже восторжествовало мнение, что каждая туманность — это газовое облако, подсвеченное изнутри молодой звездой. Позже астрономы убедились, что некоторые туманности, в том числе и Андромеда, содержат множество звезд, однако еще долго не было ясно, расположены они в нашей Галактике или за ее пределами. И лишь в 1923–1924 годах Эдвин Хаббл определил, что расстояние от Земли до Андромеды как минимум троекратно превосходит диаметр Млечного Пути (на самом деле примерно в 20 раз) и что М33, другая туманность из каталога Мессье, удалена от нас на никак не меньшую дистанцию. Эти результаты положили начало новой научной дисциплине — галактической астрономии.

 

 

 

2.4.1. Карлики и  гиганты

Вселенная заполнена галактиками  разного размера и разных масс. Их количество известно весьма приблизительно. Семь лет назад орбитальный телескоп «Хаббл» за три с половиной месяца обнаружил около 10 000 галактик, сканируя в южном созвездии Печи участок небосвода, в сто раз меньший, нежели площадь лунного диска. Если предположить, что галактики распределяются по небесной сфере с такой же плотностью, получится, что в наблюдаемом космосе их 200 млрд. Однако эта оценка сильно занижена, поскольку телескоп не смог заметить великое множество очень тусклых галактик.

Среди галактик есть и карлики, и  гиганты. В авторитетном оксфордском справочнике Companion to Cosmology 2008 года издания написано, что самые мелкие галактики содержат миллионы звезд, а самые крупные — триллионы. Эта информация уже успела устареть. Как рассказал «ПМ» профессор Техасского университета в Остине Джон Корменди, в последние годы было открыто семейство мини-галактик всего лишь с сотнями звезд: «Это так называемые ультракомпактные карлики, линейные размеры которых лежат в пределах 20 парсек. Несмотря на малое количество звезд, масса таких галактик составляет миллионы и десятки миллионов солнечных масс. Скорее всего, в этом в основном повинна темная материя, хотя некоторые ученые полагают, что немалый вклад принадлежит черным дырам и нейтронным звездам. Как бы то ни было, старое определение галактики как крупного автономного звездного скопления больше не работает». На верхней границе галактического спектра находятся сверхгиганты диаметром порядка мегапарсека, у которых численность звездного населения достигает сотни триллионов.

2.4.2. Рождение галактик

Галактики появились на свет вскоре после звезд. Считается, что первые светила вспыхнули никак не позднее, чем спустя 150 млн лет после Большого взрыва. В январе 2011 года команда астрономов, обрабатывавших информацию с космического телескопа «Хаббл», сообщила о вероятном наблюдении галактики, чей свет ушел в космос через 480 млн лет после Большого взрыва. В апреле еще одна исследовательская группа обнаружила галактику, которая, по всей вероятности, уже вполне сформировалась, когда юной Вселенной было около 200 млн лет.

Условия для рождения звезд и  галактик возникли задолго до его  начала. Когда Вселенная прошла возрастную отметку в 400 000 лет, плазма в космическом пространстве заменилась смесью из нейтрального гелия и водорода. Этот газ был еще чересчур горяч, чтобы стянуться в молекулярные облака, дающие начало звездам. Однако он соседствовал с частицами темной материи, изначально распределенными в пространстве не вполне равномерно — где чуть плотнее, где разреженнее. Они не взаимодействовали с барионным газом и потому под действием взаимного притяжения свободно стягивались в зоны повышенной плотности. Согласно модельным вычислениям, уже через сотню миллионов лет после Большого взрыва в космосе образовались облака темной материи величиной с нынешнюю Солнечную систему. Они объединялись в более крупные структуры, невзирая на расширение пространства. Так возникли скопления облаков темной материи, а потом и скопления этих скоплений. Они втягивали в себя космический газ, предоставляя ему возможность сгущаться и коллапсировать. Таким путем появились первые сверхмассивные звезды, которые быстро взрывались сверхновыми и оставляли после себя черные дыры. Эти взрывы обогащали космическое пространство элементами тяжелее гелия, которые способствовали охлаждению коллапсирующих газовых облаков и потому делали возможным появление менее массивных звезд второго поколения. Такие звезды уже могли существовать миллиарды лет и потому были в состоянии формировать (опять-таки с помощью темной материи) гравитационно связанные системы. Так возникли долгоживущие галактики, в том числе и наша.

«Многие детали галактогенеза еще скрыты в тумане,– говорит Джон Корменди. — В частности, это относится к роли черных дыр. Их массы варьируют от десятков тысяч масс Солнца до абсолютного на сегодняшний день рекорда в 6,6 млрд. солнечных масс, принадлежащего черной дыре из ядра эллиптической галактики М87, расположенной в 53,5 млн световых лет от Солнца. Дыры в центрах эллиптических галактик, как правило, окружены балджами, составленными из старых звезд. Спиральные галактики могут вовсе не иметь балджей или же обладать их плоскими подобиями, псевдобалджами. Масса черной дыры обычно на три порядка меньше массы балджа — естественно, если оный наличествует. Эта закономерность подтверждается наблюдениями, охватывающими дыры массой от миллиона до миллиарда солнечных масс».

Как полагает профессор Корменди, галактические черные дыры набирают массу двумя путями. Дыра, окруженная полноценным балджем, растет за счет поглощения газа, который приходит к балджу из внешней зоны галактики. Во время слияния галактик интенсивность поступления этого газа резко возрастает, что инициирует вспышки квазаров. В результате балджи и дыры эволюционируют параллельно, что и объясняет корреляцию между их массами (правда, могут работать и другие, еще неизвестные механизмы).

Иное дело безбалджевые галактики и галактики с псевдобалджами. Массы их дыр обычно не превышают 104–10солнечных масс. По мнению профессора Корменди, они подкармливаются газом за счет случайных процессов, которые происходят недалеко от дыры, а не простираются на целую галактику. Такая дыра растет вне зависимости от эволюции галактики или ее псевдобалджа, чем и обусловлено отсутствие корреляции между их массами.

2.4.3. Звездное расселение

Галактики распределены в космическом  пространстве вовсе не хаотично. Массивные галактики нередко окружены небольшими галактиками-спутниками.

И наш Млечный Путь, и соседняя Андромеда имеют не менее 14 спутников, и, скорее всего, их гораздо больше. Галактики любят объединяться в пары, тройки и более крупные группы из десятков гравитационно связанных партнеров. Ассоциации побольше, галактические скопления, содержат сотни и тысячи галактик (первое из таких скоплений открыл еще Мессье). Порой в центре скопления наблюдается особо яркая гигантская галактика, возникшая, как считают, в процессе слияния галактик меньшего калибра. И наконец, есть еще и сверхскопления, в которые входят как галактические скопления и группы, так и отдельные галактики. Обычно это вытянутые структуры протяженностью до сотни мегапарсек. Их разделяют почти полностью свободные от галактик космические пустоты такого же размера. Сверхскопления уже не организованы в какие-либо структуры более высокого порядка и разбросаны по космосу случайным образом. По этой причине в масштабах нескольких сотен мегапарсек наша Вселенная однородна и изотропна.

 


 

 

 

 

 

 

 

 

 

 

 

Местная группа галактик 
Подобно людям, галактики объединяются в группы. Наша Местная группа включает две самые крупные галактики в окрестностях размером порядка 3 мегапарсек — Млечный Путь и Андромеду (M31), галактику Треугольника, а также их спутники — Большое и Малое Магеллановы облака, карликовые галактики в Большом Псе, Пегасе, Киле, Секстанте, Фениксе и еще множество других — всего числом около полусотни. Местная группа, в свою очередь, является членом местного сверхскопления Девы. Изображение: «Популярная механика»

2.4.4. Млечный путь

Солнце обращается вокруг центра вполне рядовой спиральной галактики, в состав которой входят 200–400 млрд звезд. Ее диаметр приблизительно равен 28 килопарсекам (чуть больше 90 тысяч световых лет). Радиус солнечной внутригалактической орбиты — 8,5 килопарсек (так что наше светило смещено к внешнему краю галактического диска), время полного оборота вокруг центра Галактики — примерно 250 млн лет. Балдж Млечного Пути имеет эллипсовидную форму и наделен баром, который обнаружили совсем недавно. В центре балджа находится компактное ядро, заполненное звездами различного возраста — от нескольких миллионов лет до миллиарда и старше. Внутри ядра за плотными пылевыми облаками скрывается достаточно скромная по галактическим стандартам черная дыра – всего 3,7 млн солнечных масс.

 

Используя инфракрасные снимки космического телескопа Spitzer, астрономы составляют карту Млечного Пути. Он состоит из двух самых крупных спиральных рукавов – Щита-Центавра и Персея, соединенных баром, и двух более мелких – Стрельца и Наугольника, наполненных газовыми облаками и областями формирования звезд. Еще более мелкие рукава включают Внешний, Дальний и Ближний 3-килопарсековые рукава. Наша Солнечная система находится в небольшом рукаве (отроге) Ориона. Изображение: «Популярная механика»

 

 

 

Наша Галактика может похвастаться двойным звездным диском. На долю внутреннего диска, который имеет по вертикали не более 500 парсек, приходится 95% звезд дисковой зоны, в том числе все молодые яркие звезды. Его охватывает внешний диск толщиной в 1500 парсек, где обитают звезды постарше. Толщина газопылевого диска Млечного Пути не менее 3,5 килопарсек. Четыре спиральных рукава диска — области повышенной плотности газопылевой среды — содержат большинство самых массивных звезд.  
Диаметр гало Млечного Пути не менее чем вдвое больше диаметра диска. Там обнаружено порядка 150 глобулярных кластеров, возраст старейших превышает 13 млрд. лет. Гало заполнено темной материей комковатой структуры. По последним данным, форма гало — значительно приплюснутый шар. Общая масса Галактики может составлять до 3 трлн солнечных масс, причем на долю темной материи приходится 90–95%. Масса звезд Млечного Пути оценивается в 90–100 млрд. масс Солнца.

 

2.4.5. Форма и содержание

Галактики различаются и морфологией (то есть формой). В целом их подразделяют на три основных класса — дисковидные, эллиптические и неправильные (иррегулярные). Это общая классификация, есть гораздо более детальные.

Дисковидная галактика — это звездный блин, вращающийся вокруг оси, проходящей через его геометрический центр. Обычно по обе стороны центральной зоны блина имеется овальное вздутие — балдж (от англ. bulge). Балдж тоже вращается, однако с меньшей угловой скоростью, нежели диск. В плоскости диска нередко наблюдаются спиральные ветви, изобилующие сравнительно молодыми яркими светилами. Однако есть галактические диски и без спиральной структуры, где таких звезд много меньше.

Центральную зону дисковидной галактики может  рассекать звездная перемычка — бар. Пространство внутри диска заполнено газопылевой средой — исходным материалом для новых звезд и планетных систем. Галактика имеет два диска: звездный и газовый. Они окружены галактическим гало — сферическим облаком разреженного горячего газа и темной материи, которая и вносит основной вклад в полную массу галактики. Гало вмещает также отдельные старые звезды и шаровые звездные скопления (глобулярные кластеры) возрастом до 13 млрд. лет. В центре едва ли не любой дисковидной галактики, как с балджем, так и без балджа, расположена сверхмассивная черная дыра. Самые крупные галактики этого типа содержат по 500 млрд. звезд.

Эллиптическая галактика, как и  следует из ее названия, имеет форму  эллипсоида. Она не вращается как целое и потому не обладает осевой симметрией. Ее звезды, которые в основном имеют сравнительно небольшую массу и солидный возраст, обращаются вокруг галактического центра в разных плоскостях и иногда не по отдельности, а сильно вытянутыми цепочками. Новые светила в эллиптических галактиках загораются редко в связи с дефицитом исходного сырья — молекулярного водорода.

Как самые крупные, так и самые  мелкие галактики относятся к  эллиптическому типу. Общая доля его  представителей в галактическом  населении Вселенной всего около 20%. Эти галактики (возможно, за исключением  самых мелких и тусклых) также  скрывают в своих центральных  зонах сверхмассивные черные дыры. Эллиптические галактики имеют  и гало, но не столь четкие, как у дисковидных.

Все прочие галактики считаются  иррегулярными. Они содержат много  пыли и газа и активно порождают  молодые звезды. На умеренных расстояниях от Млечного Пути таких галактик немного, всего-то 3%. Однако среди объектов с большим красным смещением, чей свет был испущен не позже, чем через 3 млрд. лет после Большого взрыва, их доля резко возрастает. Судя по всему, все звездные системы первого поколения были невелики и обладали неправильными очертаниями, а крупные дисковидные и эллиптические галактики возникли гораздо позже.

Информация о работе Строение и эволюция солнечной системы