Автор работы: Пользователь скрыл имя, 16 Декабря 2010 в 16:35, реферат
Общие сведения и классификация. Конструкция кривошипно-шатунного механизма. Поршневая группа. Шатунная группа.
Головку (крышку) цилиндров в виде общей детали на несколько цилиндров выполняют, как правило, в автомобильных, тракторных и некоторых других двигателях. В тепловозных и судовых двигателях на каждый цилиндр устанавливают отдельную крышку; такие головки применяются и в автомобильных двигателях, а также в тракторных с воздушным охлаждением.
Во время
работы двигателя головка нагружается
силами давления газа и предварительной
затяжки крепежных шпилек или
болтов. В стенках головки возникают
также температурные
Головки цилиндров
большей частью делают отъемными, что
облегчает их изготовление и обслуживание
двигателей. На рис. 1.9 показана головка
цилиндров четырехтактного
Рис. 1.9. Головка цилиндров четырехтактного двигателя
Головки цилиндров отливают из чугуна или алюминиевого сплава, реже – из стали. В судовых и стационарных двигателях для изготовления крышек цилиндров применяется серый чугун, в двигателях повышенной мощности – легированный чугун, иногда их делают литыми из стали или составными: стальная кованая нижняя стенка (днище) и литая чугунная верхняя часть.
К цилиндру головки
крепятся шпильками, болтами или
анкерными связями, проходящими
через остов двигателя. Стык между
головкой и цилиндрами во избежание
прорыва газа уплотняется прокладками,
изготовленными из красной меди, стального
листа, медно-асбестового материала
или алюминиевого сплава. Иногда уплотнение
стыка достигается не с помощью
прокладок, а за счет смятия выступающего
пояска.
1.2.2. Поршневая группа
Поршневая группа состоит из поршня, поршневых колец, поршневого пальца, деталей для удержания пальца от осевого перемещения, крепежных деталей.
Поршень, относящийся
к числу наиболее ответственных
и напряженных деталей
На поршень
действуют механические нагрузки от
давления газов и сил инерции,
а также высокие тепловые нагрузки
в период непосредственного
Основными элементами поршня являются днище и боковые стенки. Боковые стенки образуют уплотняющую (верхнюю) и направляющую (нижнюю) части. Днище вместе с уплотняющей частью образуют головку поршня, а направляющую (тронковую) часть называют юбкой поршня.
На рис. 1.10.а показана конструкция поршня дизельного двигателя. Поршень имеет форму стакана, форма днища которого определяет форму камеры сгорания. Днище воспринимает давление газов и поэтому должно быть весьма прочным. Форма днища должна соответствовать форме и расположению струй топлива, впрыскиваемого в камеру сгорания.
В двигателях с внешним смесеобразованием и относительно невысокой степенью сжатия наиболее распространен поршень с плоским днищем (рис. 1.10.б).
В двухтактных двигателях со щелевой схемой газообмена днищу придают форму, которая способствует созданию нужного направления движения продувочного воздуха.
На наружной поверхности в головке поршня имеются канавки для поршневых колец, служащих для уплотнения цилиндра от прорыва газов и попадания смазки из картера в камеру сгорания. На внутренней поверхности юбки поршня имеются бобышки с отверстиями для установки поршневого пальца.
Для изготовления поршней используют чугун, алюминиевые и магниевые сплавы, а также сталь. Большей частью поршни делают из чугуна и алюминиевых сплавов.
Чугунные поршни
отличаются высокими прочностью и износостойкостью
и малым коэффициентом линейного расширения,
но имеют большую массу.
а б
Рис. 1.10. Поршни двигателей
Поршни из алюминиевых сплавов обладают меньшей прочностью и износостойкостью, но значительно легче чугунных и применяются в двигателях с высокой частотой вращения. Поршень, изготовленный из алюминиевого сплава, несмотря на большую толщину стенок, на 25–30% легче чугунного. Теплопроводность алюминиевых сплавов в 3–4 раза выше, чем у чугуна, поэтому температура днища поршней из алюминиевых сплавов ниже, чем температура днища чугунных поршней. В результате этого соответственно ниже температура заряда, лучше наполнение цилиндра и имеется возможность осуществить большую степень сжатия в двигателях с внешним смесеобразованием. Следует отметить также, что вследствие меньшего коэффициента трения алюминиевых сплавов понижается мощность, затрачиваемая на преодоление трения поршней в цилиндре.
Существенным
недостатком алюминиевых
Во время эксплуатации двигателя больше всего нагревается головка поршня. Поэтому диаметр ее делают обычно несколько меньше диаметра юбки. Для лучшей приработки стенки поршней из алюминиевых сплавов и чугунных поршней часто покрывают слоем олова толщиной около 0,01–0,1 мм.
Поршни двигателей с крейцкопфным кривошипно-шатунным механизмом, в отличие от поршней двигателей с тронковым кривошипно-шатунным механизмом, разгружены от нормальной силы. Поэтому юбка поршня может быть небольшой длины. Крепление поршня со штоком жесткое, без поршневого пальца.
Охлаждение поршней осуществляется в большинстве случаев маслом. В двигателях с тронковым кривошипно-шатунным механизмом поршни охлаждаются струей масла из системы смазки, направленной на внутреннюю сторону днища через канал в шатуне и сопло, которое установлено в верхней головке шатуна.
Поршневые кольца по своему назначению делятся на компрессионные (уплотнительные) и маслосъемные (маслосбрасывающие).
Компрессионные кольца ставят для предупреждения прорыва газов в картер во время сжатия и расширения. Кроме того, они служат для отвода теплоты от поршня. Компрессионные кольца работают в тяжелых условиях, совершая возвратно-поступа-тельное движение при высоких нагрузке, скорости скольжения и температуре. Кольца нагреваются от соприкосновения с горячими газами и нагретыми стенками поршня, а также вследствие трения о стенки цилиндра. Работа трения поршневых колец составляет приблизительно 40–50% механических потерь в двигателе.
Кольцо должно
плотно прижиматься к внутренней
поверхности цилиндра. Для этого
кольцо изготовляют разрезным, и
его диаметр в свободном
Рис. 1.11. Уплотняющее действие поршневых колец
Опытные данные, приведенные на рис. 1.11, показывают, что при наличии трех компрессионных колец на поршне давление после третьего кольца составляет всего лишь 7.6% от давления в цилиндре. В двигателях с внешним смесеобразованием, с относительно невысокими давлениями сжатия и расширения поршни имеют по два-четыре компрессионных кольца. В дизелях вследствие более высоких давлений в цилиндре число компрессионных колец составляет три-шесть. Необходимость в большем числе компрессионных колец в дизелях связана также с условиями пуска. При низкой частоте вращения вала во время пуска требуемую температуру легче обеспечить при большом числе компрессионных колец из-за меньшей утечки сжимаемого воздуха.
Для изготовления
компрессионных колец применяется
серый чугун с повышенным содержанием
фосфора и с присадками хрома,
никеля или молибдена, придающими материалу
кольца необходимую прочность, вязкость
и хорошие антифрикционные
Маслосъемные кольца служат для удаления излишка масла с рабочей поверхности гильзы и предупреждения возможности попадания его в камеру сгорания, особенно в двигателях с тронковым кривошипно-шатунным механизмом, вследствие разбрызгивания масла. Часть попавшего на стенку цилиндра масла в результате так называемого насосного действия компрессионных колец выжимается в камеру сгорания и вызывает не только излишний расход смазочного материала, но и повышенное нагарообразование, а также закоксовывание, особенно верхних колец. Насосное действие компрессионных колец показано на рис. 1.12.
Во время движения поршня вниз кольца прижимаются к верхним торцам поршневых канавок, и масло со стенок цилиндра поступает в нижние торцовые зазоры. При обратном движении поршня кольца перемещаются в канавках и выдавливают масло через радиальный зазор в верхний торцовый зазор и далее в пространство над кольцами.
Рис. 1.12. Насосное действие поршневых колец
На поршне
устанавливают одно-три
а б
Рис. 1.13. Форма компрессионных (а) и маслосъемных колец (б)
Поршневой палец служит для шарнирного соединения поршня с шатуном в тронковом кривошипно-шатунном механизме. Сечение пальцев может быть сплошным или кольцевой формы, что уменьшает массу пальца. Концами палец устанавливается в бобышках поршня, среднюю часть его охватывает подшипник верхней головки шатуна.
В двигателях старых конструкций для фиксации от осевого перемещения палец запрессовывался в гнезда и стопорился болтом. От проворачивания палец удерживался шпонкой. Существенным недостатком такой установки пальца было то, что нагрев пальца вызывал деформацию юбки, а это служило причиной заклинивания поршня.
Поэтому в современных двигателях широкое применение имеет так называемый плавающий палец, который может свободно поворачиваться как в верхней головке шатуна, так и в бобышках поршня. От осевого перемещения палец фиксируется пружинными стопорными кольцами. Вследствие наличия некоторой свободы перемещения и возможности поворачиваться вокруг своей оси во время работы плавающий палец изнашивается меньше и износ получается более равномерным по его поверхности.
При работе на
поршневой палец действуют