Электростартеры

Автор работы: Пользователь скрыл имя, 19 Сентября 2011 в 12:25, лекция

Краткое описание

Возможность осуществления надежного пуска двигателя зависит от многих конструктивных и эксплуатационных факторов, к которым относят:
- степень сжатия, рабочий объем, число и схему расположения цилиндров;

Содержимое работы - 1 файл

Тема 6 Электростартеры.doc

— 704.00 Кб (Скачать файл)

Тема 6. Электростартеры

Пусковые качества автомобильных двигателей 

 Возможность осуществления надежного пуска двигателя зависит от многих конструктивных и эксплуатационных факторов, к которым относят:

 - степень сжатия, рабочий объем, число и схему расположения цилиндров;

 - тепловое состояние деталей двигателя;

 - регулировочные параметры системы зажигания (для бензиновых двигателей) и топливной аппаратуры;

 - низкотемпературные свойства топлива;

 - вязкостно-температурные характеристики моторного масла;

 - мощность и энергоемкость системы пуска;

 - наличие и эффективность вспомогательных пусковых устройств и т.д.

 Поршневые двигатели внутреннего сгорания начинают работать устойчиво при относительно высокой частоте вращения коленчатого вала. Пусковое устройство должно вращать коленчатый вал с частотой, достаточной для начала и развития процессов образования, воспламенения и сгорания топливо - воздушной смеси и способствовать выходу двигателя на устойчивый режим самостоятельной работы. Характер протекания пусковых процессов и требования к пусковой частоте вращения коленчатого вала различны для бензиновых двигателей и дизелей.

 Пусковая частота вращения коленчатого вала бензинового двигателя должна быть достаточной для подготовки топливо - воздушной смеси, способной воспламениться от электрической искры. При пуске холодного бензинового двигателя из-за низкой температуры топлива, стенок впускного трубопровода, и малой скорости перемещения в нем воздушного потока в смесеобразовании участвуют только легкоиспаряющиеся фракции бензина, поэтому пусковые качества бензина оценивают по температуре выкипания 10% фракций. Для подготовки смеси, находящейся в пределах воспламеняемости, при пуске увеличивают подачу топлива за счет оптимальной для пуска регулировки топливной аппаратуры. С уменьшением пусковой частоты вращения коленчатого вала становится более продолжительным процесс сжатия, увеличивается теплопередача в холодные стенки цилиндра и пропуск газов через неплотности в поршневых кольцах и клапанах. Давление и температура в конце сжатия уменьшаются, что ухудшает условия воспламенения смеси и распространения пламени. Уменьшение массы смеси из-за отсутствия дозарядки цилиндров за счет инерции воздушного потока при запаздывании закрытия впускного клапана снижает количество выделяемой при сгорании теплоты и индикаторную мощность, развиваемую двигателем при пуске. Ухудшение условий смесеобразования при пуске приводит к необходимости увеличения энергии электрической искры. Для пусковых режимов подбирается наивыгоднейший угол опережения зажигания.

   В дизелях топливо - воздушная смесь образуется непосредственно в цилинд pax после подачи топлива форсункой. Воспламенение смеси происходит под действием высокой температуры в камере сгорания. Вследствие малой продолжительности процесса смесеобразования и отсутствия принудительного зажигания топливо - воздушной смеси пуск дизелей осуществить сложнее.

 Пуск дизелей улучшается с увеличением цетанового числа топлива, по которому оценивают его способность к воспламенению. При низких температурах большую роль играет испаряемость дизельного топлива. Пусковые свойства дизельного топлива оценивают по температуре выкипания 50% фракций или по количеству фракций, выкипающих до температуры 300°С.

 Температура в цилиндре в момент подачи топлива должна превышать температуру самовоспламенения топлива, чтобы период задержки воспламенении был меньше времени, отводимого при пуске на образование смеси и развитие предпламенных реакций. При пусковых частотах в режиме электростартерного пуска с большой неравномерностью вращения коленчатого вала резко увеличивается продолжительность процессов сжатия, что вызывает соответствующий рост утечек тепла и рабочего заряда и снижение температуры и давления в цилиндрах в конце такта сжатия.

 Достаточные для воспламенения топливо - воздушной смеси давление и температура в цилиндрах дизелей достигаются благодаря большей, чем у бензиновых двигателей, степени сжатия и увеличенной частоте вращения коленчатого вала пусковым устройством.

 Надежность пуска дизеля повышается за счет надлежащего подбора диаметра и числа сопловых отверстий распылителя форсунки, правильной ориентации распылителя в камере сгорания, увеличения давления впрыскивания и количества подаваемого топлива, а также подбора наивыгоднейшего для пуска угла опережения подачи топлива.

 При пуске двигателя пусковое устройство преодолевает сопротивление вращению коленчатого вала. Момент сопротивления складывается в основном из момента сил трения в кинематических парах двигателя и момента газовых сил, обусловленного разностью работ сжатия и расширения в цилиндрах двигателя. Момент сопротивления зависит от температуры Т, средней частоты n вращения коленчатого вала и неравномерности вращения, числа, схемы расположения и рабочего объема цилиндров, а также от размеров трущихся поверхностей двигателя.

 Пусковые качества автомобильных двигателей оценивают по минимальной пусковой частоте вращения коленчатого вала и среднему давлению трения.

 Минимальная пусковая частота вращения - это наименьшая частота вращения коленчатого вала, при которой пуск двигателя в заданных условиях происходит за две попытки пуска продолжительностью по 10 с для бензиновых двигателей и по 15 с для дизелей с перерывами между попытками 1 мин.

 Минимальные пусковые частоты определяются по зависимости времени пуска tn от средней частоты вращения n коленчатого вала. Минимальные пусковые частоты увеличиваются с понижением температуры, увеличением вязкости масла и заметно снижаются при увеличении числа цилиндров двигателя и использовании устройств облегчения пуска.

 Среднее давление трения представляет собой условную удельную величину,  характеризующую сопротивление вращению коленчатого вала двигателя,  укомплектованного всеми штатными навесными агрегатами.

 По минимальной пусковой частоте вращения и соответствующему ей моменту сопротивления Мс определяют требуемую пусковую мощность.

 Пусковые качества двигателей на автомобилях оценивают по предельной температуре надежного пуска и времени подготовки двигателя к принятию нагрузки.

 Предельная температура надежного пуска - наиболее низкая температура окружающего воздуха, при которой осуществляется надежный пуск холодного двигателя. Под надежным пуском понимается пуск двигателя, оборудованного всеми навесными агрегатами, на основном топливе, при использовании штатных аккумуляторных батарей, имеющих 75%-ю степень заряженности, не более чем за три попытки пуска холодного двигателя и не более чем за две попытки пуска горячего двигателя или после предпускового его подогрева.

 Холодный двигатель - двигатель, температура деталей, охлаждающей жидкости, масла и топлива которого отличаются от температуры окружающего воздуха не более чем на 1 0С. Горячий двигатель - двигатель, остановленный после работы, при температуре окружающего воздуха до +45°С и температуре деталей двигателя, охлаждающей жидкости и масла не ниже рабочей. Время подготовки двигателя к принятию нагрузки - это затраты времени на приведение в действие и работу устройства для облегчения пуска холодного двигателя или системы предпускового подогрева, на пуск двигателя и его работу в режиме холостого хода до достижения состояния, обеспечивающего принятие нагрузки. При использовании предпускового подогревателя время подогрева электролита аккумуляторной батареи до температуры не ниже -35°С не учитывается.  

Системы электростартерного пуска 

 Тип системы пуска определяет используемая энергия и конструкция основного пускового устройства (стартера). Для пуска автомобильных двигателей используют системы электростартерного пуска. Они надежны в работе, обеспечивают дистанционное управление и возможность автоматизации процесса пуска двигателей с помощью электротехнических устройств.

 Структуры схем систем электростартерного пуска отличаются между собой незначительно (рис. 4.3). В системах управления электростартером предусмотрены электромагнитные тяговые реле, дополнительные реле и реле блокировки, обеспечивающие дистанционное включение, автоматическое отключение стартера от аккумуляторной батареи после пуска двигателя и предотвращение включения стартера при работающем двигателе. 

 

 

   

 

 

 

 

 

 

 

 Рис. 4.3. 

 Источником энергии в системах электростартерного пуска является стартерная свинцовая аккумуляторная батарея - химический источник тока, поэтому в электростартерах используют электродвигатели постоянного тока. Характеристики стартерного электропривода с электродвигателями постоянного тока последовательного или смешанного возбуждения хорошо согласуются со сложным характером нагрузки, создаваемой поршневым двигателем при пуске.

 

 Стартерный электродвигатель получает питание от аккумуляторной батареи через замкнутые контакты 2 (рис. 4.4) тягового электромагнитного реле. При замыкании контактов выключателя S приборов и стартера, дополнительного реле или реле блокировки втягивающая 3 и удерживающая 4 обмотки тягового реле подключаются к аккумуляторной батарее GB. Якорь 5 тягового реле притягивается к сердечнику электромагнита и с помощью штока 6 и рычага 7 механизма привода вводит шестерню 10 в зацепление с зубчатым венцом 11 маховика двигателя.

Рис. 4.4. Схема включения электростартера:

1 - контактный болт; 2 - подвижный контактный диск; 3, 4 -соответственно втягивающая и удерживающая обмотки тягового реле; 5 -якорь тягового реле; 6 - шток; 7 -рычаг привода; 8 -поводковая муфта; 9 - муфта свободного хода; 10-шестерня привода; 11 -зубчатый венец маховика; 12 -стартерный электродвигатель

 

 В конце хода якоря 5 контактная пластина 2 замыкает силовые контактные болты 1, и стартерный электродвигатель 12, получая питание от аккумуляторной батареи, приводит во вращение коленчатый вал двигателя. После пуска двигателя муфта свободного хода 9 предотвращает передачу вращающего момента от маховика к валу якоря электродвигателя. Шестерня привода не выходит из зацепления с венцом маховика до тех пор, пока замкнуты контактные болты 1. При размыкании выключателя S втягивающая и удерживающая обмотки тягового реле подсоединяются к аккумуляторной батарее последовательно через силовые контактные болты 1. Так как число витков у обеих обмоток одинаково и по ним при последовательном соединении проходит один и тот же ток, обмотки при разомкнутом выключателе S создают два равных, но противоположно направленных магнитных потока. Сердечник электромагнита размагничивается, возвратная пружина перемещает якорь 5 реле в исходное нерабочее положение и выводит шестерню 10 из зацепления с зубчатым венцом маховика. При этом размыкаются и силовые контактные болты 1.

 Недостатком систем электростартерного пуска с дистанционным управлением является большое количество элементов и необходимость применения сложных конструкций стартеров. Однако их использование позволяет уменьшить длину силовых электроцепей стартерного электродвигателя и тягового реле, уменьшить продолжительность пуска, расход энергии на пуск и тем самым увеличить срок службы аккумуляторной батареи и стартера. 

Особенности работы электростартеров и требования к электростартерам 

 Электростартер получает питание от аккумуляторной батареи - автономного источника электроэнергии ограниченной мощности. Вследствие внутреннего падения напряжения в батарее напряжение на выводах электростартера не остается постоянным, а уменьшается с увеличением нагрузки и силы потребляемого тока.

 Сила тока электростартеров может составлять несколько сот и даже тысяч ампер. При такой силе тока на характеристики стартерного электродвигателя большое влияние оказывает падение напряжения в стартерной сети, т.е. в стартерном проводе и «массе».

 Характеристики стартерных электродвигателей зависят от емкости и технического состояния аккумуляторной батареи.

 Для стартерного электропривода двигателя характерна значительная неравномерность нагрузки, обусловленная резким изменением момента сопротивления от сил давления газов в цилиндрах и сложной кинематикой кривошипно-шатунного механизма. При переменной нагрузке снижается мощность и КПД системы пуска, что необходимо учитывать при выборе мощности стартерного электродвигателя и емкости аккумуляторной батареи.

Информация о работе Электростартеры