Автор работы: Пользователь скрыл имя, 24 Октября 2011 в 16:29, реферат
ажную роль играет автомобильный транспорт в освоении восточных и нечерноземных районов нашей страны. Отсутствие развитой сети железных дорог и ограничение возможностей использования рек для судоходства делают автомобиль главным средством передвижения в этих районах.
Автомобильный транспорт в России обслуживает все отрасли народного хозяйства и занимает одно из ведущих мест в единой транспортной системе страны. На долю автомобильного транспорта приходится свыше 80% грузов, перевозимых всеми видами транспорта вместе взятыми, и более 70% пассажирских перевозок.
цилиндре за рабочий цикл.
Согласно определению, среднее индикаторное давление - отношение
индикаторной работы газов за цикл Li к единице рабочего объема
цилиндра Vh, т.е. Pi=Li/Vh.
При наличии индикаторной диаграммы, снятой с двигателя, среднее индикаторное давление можно определить по высоте прямоугольника, построенного на основании Vh, площадь которого равна полезной площади индикаторной диаграммы, представляющей собой в некотором масштабе индикаторную работу Li.
Определить с помощью планиметра полезную площадь F индикаторной
диаграммы (м^2) и длину l индикаторной диаграммы (м), соответствующую
рабочему объему цилиндра, находят значение среднего индикаторного
давления Pi=F*m/l, где m - масштаб давления индикаторной диаграммы,
Па/м.
Средние индикаторные давления при номинальной нагрузке у четырехтактных карбюраторных двигателей 0.8 - 1.2 МПа, у четырехтактных дизелей 0.7 - 1.1 МПа, у двухтактных дизелей 0.6 - 0.9 МПа.
Индикаторной мощностью Ni называют работу, совершаемую газами в цилиндрах двигателя в единицу времени.
Индикаторная работа (Дж), совершаемая газами в одном цилиндре за один рабочий цикл, Li=Pi*Vh.
Так как число рабочих циклов, совершаемых двигателем в секунду, равно 2n/T, то индикаторная мощность (кВт) одного цилиндра Ni=(2/T)*Pi*Vh*n*10^-3, где n - частота вращения коленчатого вала, 1/с, T - тактность двигателя - число тактов за цикл (T=4 - для четырехтактных двигателей и T=2 - для двухтактных).
Индикаторная мощность многоцилиндрового двигателя при числе
цилиндров i Ni=(2/T)*Pi*Vh*n*i*10^-3.
Эффективной мощностью Ne называют мощность, снимаемую с коленчатого
вала двигателя для получения полезной работы.
Эффективная мощность меньше индикаторной Ni на величину мощности
механических потерь Nm, т.е. Ne=Ni-Nm.
Мощность
механических потерь
действие кривошипно-шатунного
механизма и механизма
вентилятора, жидкостного, масляного и топливного насосов, генератора
тока и других вспомогательных механизмов и приборов.
Механические потери в двигателе оцениваются механическим КПД nm,
которое представляет собой отношение эффективной мощности к индикаторной, т.е. Nm=Ne/Ni=(Ni-Nm)/Ni=1-Nm/Ni.
Для современных двигателей механический КПД составляет 0.72 - 0.9.
Зная величину
механического КПД можно
Ne=nm*Ni.
Аналогично индикаторной мощности определяют мощность механических
потерь Nm=2/T*Pm*Vh*ni*10^-3, где Pm - среднее давление механических
потерь, т.е. часть среднего индикаторного давления, которая
расходуется на преодоление трения и на привод вспомогательных
механизмов и приборов.
Согласно экспериментальным данным для дизелей Pm=1.13+0.1*ст; для
карбюраторных двигателей Pm=0.35+0.12*ст; где ст - средняя скорость
поршня, м/с.
Разность между средним индикаторным давлением Pi и средним давлением механических потерь Pm называют средним эффективным давлением Pe, т.е. Pe=Pi-Pm.
Эффективная мощность двигателя Ne=(2/T)*Pe*Vh*ni*10^-3, откуда среднее эффективное давление Pe=10^3*Ne*T/(2Vh*ni).
Среднее
эффективное давление при
Экономичность действительного рабочего цикла двигателя определяют
индикаторным КПД ni и удельным индикаторным расходом топлива gi.
Индикаторный
КПД оценивает степень
Теплота (кВт), эквивалентная индикаторной работе за 1 с, Qi=Ni. Теплота (кВт), затраченная на работу двигателя в течение 1 с, Q=Gт*(Q^p)н, где Gт - расход топлива, кг/с; (Q^p)н - низшая теплота сгорания топлива, кДж/кг. Подставляя значение Qi и Q в равенство (а), получим ni=Ni/Gт*(Q^p)н (1).
Удельный индикаторный расход топлива [кг/кВт*ч] представляет собой
отношение секундного расхода топлива Gт к индикаторной мощности Ni,
т.е. gi=(Gт/Ni)*3600, или [г/(кВт*ч)] gi=(Gт/Ni)*3.6*10^6.
Экономичность
работы двигателя в целом
ni и удельным эффективным расходом топлива ge. Эффективный КПД
оценивает степень
использования теплоты топлива
с учетом всех видов потерь
как тепловых так и механических и представляет
собой отношение теплоты Qe, эквивалентной
полезной эффективной работе, ко
всей затраченной теплоте Gт*Q, т.е. nm=Qe/(Gт*(Q^p)н)=Ne/(Gт*(Q^p)
Так как
механический КПД равен
уравнение, определяющее механический КПД nm, значения Ne и Ni из
уравнений (1) и (2), получим nm=Ne/Ni=ne/ni, откуда ne=ni/nM, т.е. эффективный КПД двигателя равен произведению индикаторного КПД на механический.
Удельный
эффективный расход топлива [
Из анализа
рабочего цикла двигателя
следует, что только часть
Количество располагаемой (введенной) теплоты (кВт) Q=Gт*(Q^p)н. Теплота (кВт), превращенная в полезную работу, Qe=Ne. Теплота (кВт), потерянная с охлаждающей водой, Qохл=Gв*св*(t2-t1), где Gв - количество воды, проходящей через систему , кг/с; св – теплоемкость воды, кДж/(кг*К) [св=4.19 кДж/(кг*К)]; t2 и t1 - температуры воды при входе в систему и при выходе из нее, С.
Теплота (кВт), теряемая с отработавшими газами,
Qг=Gт*(Vp*срг*tг-Vв*срв*tв), где Gт - расход топлива, кг/с; Vг и Vв - расходы газов и воздуха, м^3/кг; срг и срв - средние объемные теплоемкости газов и воздуха при постоянном давлении, кДж/(м^3*К); tр и tв - температура отработавших газов и воздуха, С.
Теплота,
теряемая вследствие неполноты
сгорания топлива,
Остаточный член теплового баланса (кВт) Qост=Q-(Qe+Qохл+Qг+Qн.с).
Тепловой баланс можно составить в процентах от всего количества введенной теплоты, тогда уравнение баланса примет вид: 100%=qe+qохл+qг+qн.с+qост, где qe=(Qe/Q*100%); qохл=(Qохл/Q)*100%;
qг=(Qг/Q)*100% и т.д.
В последнее
время все большее
давления, т.е. двигатели
с наддувом. И перспективы
Для привода
нагнетателя в современных
энергию отработавших газов. В этом случае отработавшие в цилиндре газы, которые имеют в выпускном коллекторе повышенное давление, направляют в газовую турбину, приводящую во вращение компрессор.
Согласно
схеме газотурбинного наддува
четырехтактного двигателя,
В двухтактных двигателях турбокомпрессор должен иметь более высокую мощность, чем в четырехтактных, т.к. при продувке часть воздуха проходит в выпускные окна, транзитный воздух не используется для зарядки цилиндра и понижает температуру выпускных газов. Вследствие этого на частичных нагрузках энергии отработавших газов оказывается недостаточно для газотурбинного привода компрессора. Кроме того, при газотурбинном наддуве невозможен запуск дизеля. Учитывая это, в двухтактных двигателях обычно применяют комбинированную систему наддува с последовательной или параллельной установкой компрессора с газотурбинным и компрессор с механическим приводом.
При наиболее
распространенной
На мой
взгляд, основным направлением
двигателей с воспламенением от сжатия будет являться значительное форсирование их по мощности за счет применения высокого наддува в сочетании с охлаждением воздуха после компрессора.
В четырехтактных
двигателях в результате применения
давления наддува до 3.1...3.2
МПа в сочетании с
охлаждением воздуха после
Перспективным направлением развития поршневых двигателей внутреннего сгорания является более полное использование энергии выпускных газов в турбине, обеспечивающей мощность компрессора, нужную для достижения заданного давления наддува. Избыточная мощность в этом случае передается на коленчатый вал дизеля. Реализация такой схемы наиболее возможна для четырехтактных двигателей.