Устройство автомобильных шин

Автор работы: Пользователь скрыл имя, 29 Октября 2012 в 19:48, курсовая работа

Краткое описание

При осуществлении автомобильных перевозок немалую часть внимания следует уделять безопасности движения. Автомобильные шины как элементы конструкции автомобиля, непосредственно контактирующие с дорожным покрытием, оказывают значительное влияние на устойчивость, управляемость и тормозные качества автомобиля.

Содержание работы

Введение
1) Устройство автомобильных шин
1.1) Маркировка автомобильных шин
1.2) Конструкция колес легковых автомобилей
1.3) Технические характеристики шин
1.4) Взаимодействие шин с дорогой
2) Особенности эксплуатации автомобильных шин
2.1) Потери энергии на качение шин
2.3) Амортизационные свойства шин
2.4) Долговечность, износостойкость, дисбаланс шин
2.5) Виды износа шин
2.6) Внутреннее давление воздуха в шинах и их перегрузка
2.7) Влияние стиля вождения на износ шин
2.8) Нерегулярное техническое обслуживание и ремонт шин
2.9) Нарушение правил монтажа и демонтажа шин
2.10) Дисбаланс колес
2.11) Правильный выбор и комплектование автомобилей шинами
2.12) Ремонт покрышек в условиях автопредприятия
3) Особенности эксплуатации зимних шин на грузовых автомобилях
3.1) Зимние нешипованные шины
3.2) Зимние шипованные шины
Заключение
Список источников

Содержимое работы - 1 файл

шины.doc

— 553.50 Кб (Скачать файл)

Основным преимуществом  бескамерных шин является повышенная безопасность движения автомобиля на высоких скоростях по сравнению с камерными шинами. Бескамерная шина состоит из одной монолитной части, поэтому воздух из полости может выходить наружу только через отверстие прокола, а внутреннее давление при этом снижается медленно, так что водитель имеет возможность двигаться с поврежденной шиной до места ремонта. Следует отметить лучший отвод тепла непосредственно через металлический обод бескамерной шины, отсутствие трения между покрышкой и камерой и вследствие этого — более низкий температурный режим работающей шины.

Бескамерные шины характеризуются также большей устойчивостью внутреннего давления воздуха, которая объясняется тем, что воздух с большим трудом просачивается через нерастянутый воздухонепроницаемый слой бескамерной шины, чем через растянутые стенки камеры. Бескамерные шины при эксплуатации меньше подвергаются демонтажу и монтажу, так как мелкие повреждения можно ремонтировать, не снимая шины с обода.

Бескамерные шины, взаимозаменяемые с камерными покрышками, могут монтироваться на стандартных  глубоких ободьях, если они герметичны, т. е. не имеют вмятин и повреждений.

Гарантийные нормы  пробега бескамерных шин те же, что и камерных, однако опыт эксплуатации бескамерных шин показывает, что  долговечность их на 20 % выше долговечности  камерных шин, что объясняется лучшим температурным режимом работы шин и постоянством внутреннего давления в них воздуха. Однако для их производства необходимы высококачественные материалы, но они менее технологичны. Эксплуатация бескамерных шин требует высокой технической культуры.

Радиальные  шины с металлокордом выпускаются трех типов: с металлокордом в каркасе и брекере, с нейлоновым кордом в каркасе и металлокордом в брекере, с меридиональным расположением нитей стального или нейлонового корда в каркасе и металлокордом в брекере (рис. 6).

Шины с металлокордом имеют более широкий раствор бортов, чем у обычных шин. Концы слоев’ корда завернуты попарно около одного или двух бортовых колец, навитых из одинаковой проволоки. На внутренней стороне каркаса в зоне беговой дорожки шины с металлокордом имеют привулканизированный слой резины. Он служит для предохранения камеры от проколов и более равномерного распределения напряжений в теле шины и в зоне беговой дорожки.

Металлокорд, обладая  высокой теплопроводностью и  теплостойкостью, способствует уменьшению напряжений и более равномерному распределению температуры в теле покрышки. Срок службы шин с металлокордом больше при эксплуатации их в различных дорожных условиях примерно в 2 раза, чем у обычных шин, эксплуатируемых в аналогичных условиях.

Нейлоновый  корд в каркасе и металлокорд в брекере позволяют увеличить прочность шины в зоне беговой дорожки, снизить температуру в наиболее напряженных точках шины, защитить ее каркас от повреждений, воспрепятствовать распространению трещин в протекторе.

Меридиональное расположение нитей корда каркаса увеличивает эластичность шины, повышает сцепление шины с дорогой, значительно уменьшает потери на качение колеса. Металлокорд брекера повышает прочность каркаса в окружном направлении, улучшает температурный режим работы шины. Такие шины успешно работают на дорогах с усовершенствованным покрытием и в условиях бездорожья при больших скоростях движения.

Морозостойкие шины предназначены для применения в районах с температурой ниже минус 45 °С. Работа автомобилей в этих районах на обычных неморозостойких шинах не разрешается действующими Правилами эксплуатации шин. Морозостойкие шины изготавливают из резин, сохраняющих достаточную прочность и эластичность при низких температурах и обеспечивающих нормальный срох службы шин в указанных районах.

Шины для  тропического климата отличаются тем, что они изготовлены из теплостойкой резины, хорошо сохраняющей прочность и эластичность при высоких скоростях и высоких температурах окружающего воздуха, характерных для стран с тропическим климатом. Эти шины имеют каркас из капронового либо высокопрочного или сверхпрочного вискозного корда.

Шины с металлическими шипами служат для повышения устойчивости и управляемости легковых и грузовых автомобилей и автобусов на скользких обледенелых дорогах и на льду. Диагональные и радиальные шины могут оснащаться шипами в протекторе. Применение этих шин снижает тормозной путь автомобиля в 2…3 раза, улучшает разгон в 1,5 раза и резко повышает устойчивость автомобиля против заносов.

Низко- и сверхнизкопрофильные шины выпускаются для легковых, грузовых автомобилей и автобусов. Они имеют пониженную высоту профиля (для низкопрофильных Н/В = 0,7—0,88; для сверхнизкопрофильных Н / В < 0,7, где Я — высота профиля; В — ширина профиля), что повышает устойчивость и управляемость автомобиля, обладают большей грузоподъемностью и проходимостью.

 

1.4 Взаимодействие  шин с дорогой

 

При движении автомобиля шина работает в очень сложных  и тяжелых условиях. В процессе качения на шину действуют различные  по значению и направлению силы. К внутреннему давлению воздуха и действию массы автомобиля на шину в неподвижном состоянии при качении колеса добавляются динамические силы, а также силы, связанные с перераспределением массы автомобиля между колесами. Силы изменяют свое значение, а в ряде случаев и направление в зависимости от скорости движения и состояния дорожного покрытия, температуры окружающего воздуха, уклонов, характера поворотов дороги и т.п.

 

Рис. 7 – Силы, действующие на неподвижное (а) и  подвижное (б) колесо.

 

Под действием сил при качении колеса шина в различных зонах непрерывно деформируется, т.е. отдельные ее части изгибаются, сжимаются, растягиваются. При продолжительном движении шина нагревается, в результате чего повышается внутреннее давление воздуха в шине и снижается прочность ее деталей, особенно резиновых.

Действующие на колесо автомобиля силы и моменты  вызывают со стороны дороги реактивные силы, которые в общем случае расположены  в трех взаимно перпендикулярных направлениях и приложены к колесу в месте его контакта с основанием дороги. Эти реактивные силы получили название вертикальной, тангенциальной и боковой. Неподвижное колесо подвержено действию одной вертикальной силы G от веса автомобиля, приложенной к оси колеса и равной ей по значению реактивной силе Z со стороны дороги. Вертикальная сила G, приложенная к оси колеса, и ее реакция Z со стороны дороги расположены в одной вертикальной плоскости, проходящей через ось колеса.

В случае ведомого колеса (рис. 7) толкающая сила Р от автомобиля через подшипник передается на ось колеса и вызывает со стороны дороги тангенциальную реакцию X,которая приложена к поверхности колеса в зоне его контакта с дорогой и имеет противоположное толкающей силе Р направление,

Качение ведомого колеса по опорной поверхности приводит к нарушению симметрии в области контакта колеса и дороги относительно вертикали, проходящей через центр колеса, и вызывает смещение реакции Z относительно этой вертикали вперед по ходу движения колеса на определенную величину я, называемую коэффициентом трения и измеряемую в единицах длины. Вертикальная реакция Z, как и при неподвижном колесе, численно равна нагрузке.

 

Рис. 8. Силы, действующие на ведущее (а) и тормозящее (б) колесо

 

Работа ведущего колеса отличается от работы ведомого колеса тем, что к ведущему колесу прикладывается не толкающая сила, а крутящий момент Мк (рис. 8, а). Этот момент должен уравновесить суммарное сопротивление Рсопр всех противодействующих движению сил (ветра, уклона дороги, трения, инерционных). В результате в контакте колеса с дорогой возникает реакция Rx = P сопр, направленная в сторону движения.

Кроме функции  ведомого и ведущего, колесо может  выполнять тормозящую функцию. Работу тормозящего колеса можно сравнить с работой ведущего. Разница состоит  в том, что тормозной момент, а значит, и тангенциальная реакция дороги имеют противоположное направление и определяются интенсивностью торможения (рис. 8, б). Коэффициент сцепления между колесом и покрытием дороги в большинстве случаев значительно меньше единицы, и, следовательно, тангенциальная сила, как правило, значительно меньше вертикальной.

Кроме перечисленных  сил, колесо часто подвергается действию боковых сил и моментов, являющихся следствием действия на шасси автомобиля опрокидывающих поперечных сил, например центробежной силы на повороте или составляющей массы, обусловленной наклоном дороги. На выпуклом или вогнутом профиле дороги, а также при движении по дороге, имеющей неровности, колеса также могут испытывать действие боковых сил (рис. 9), которые при условии их равенства на левых и правых колесах по величине и противоположности по направлению будут гаситься на оси, не передаваясь на сам автомобиль. Действие на колесо боковой силы ограничено сцеплением колеса с дорогой. При движении автомобиля по выпуклому или вогнутому профилю дороги или особенно по дороге с неровностями боковые силы могут достигать весьма значительной величины.

Таким образом, весь комплекс внешних нагрузок, действующих  на колесо со стороны дороги, может  быть представлен тремя взаимно  перпендикулярными силами:

 

Рис. 9 - Действие сил на колеса во время движения по неровному основанию

 

- вертикальной  реакцией Z, значение которой обусловливается  суммарной массой перевозимого  груза и автомобиля. Эта нагрузка  всегда действует на колесо  независимо от того, движется оно или нет, работает в качестве ведомого, ведущего или тормозящего. Значение же этой нагрузки при движении может изменяться в зависимости от ускорения (замедления), продольного и поперечного профиля дороги, ее извилистости, неровностей дорожного полотна и скорости движения;

- тангенциальной  реакцией, расположенной в плоскости  колеса (на рис. 2.4 не показанной) и являющейся следствием приложения  к нему внешнего момента (крутящего  или тормозного), толкающей силы, аэродинамического сопротивления,  силы трения качения. Значение этой реакции достигает наибольшей величины обычно при торможении, однако, как правило, она ограничена коэффициентом сцепления колеса с покрытием дороги, который в большинстве случаев меньше единицы и» следовательно, даже наибольшее значение тангенциальной реакции, как правило, меньше вертикальной реакции;

- боковой реакцией  У, которая расположена в плоскости,  перпендикулярной плоскости колеса. Подобно тангенциальной эта реакция  также ограничена силой сцепления  колеса с дорогой, и, следовательно, ее максимальное значение не может быть больше вертикальной силы, за исключением случаев движения по неровной дороге, глубокой колее. В этих условиях боковая реакция может значительно превосходить силу сцепления колеса с дорогой.

Особого интереса заслуживают качение наклоненного колеса и боковой увод шины. При движении автомобиля на повороте профиль эластичной шины деформируется в боковом направлении под действием центробежной силы, направленной перпендикулярно плоскости колеса (рис. 2.5). Вследствие боковой деформации шины колесо катится не в плоскости /—/, а с некоторым уводом.

Способность шины «к боковой деформации оказывает  большое влияние на эксплуатационные свойства автомобиля, особенно на его  устойчивость и управляемость. Поэтому  параметры, определяющие увод колеса, являются важной характеристикой шины.

Увод колеса оценивается утлом d, который принято  называть углом бокового увода.

 

Рис. 10 - Деформация шин при повороте автомобиля и соответствующее искажение пятна контакта шины с дорогой из-за увода колеса (вид А)

 

Приложенные к  колесу силы вызывают боковую деформацию шины в результате изгиба протектора в боковом направлении. При качении  колеса с уводом шина имеет сложную  деформацию, которая несимметрична  относительно ее вертикальной плоскости симметрии.

Для каждой шины имеются определенная максимальная боковая сила и соответствующий  ей определенный максимальный угол увода, при котором еще отсутствует  большое проскальзывание элементов  протектора в боковом направлении. Максимальный такой угол для большинства отечественных шин легковых автомобилей 3…50.

Одним из часто  встречающихся случаев качения  колеса является случай движения его  с наклоном к дороге. Действительно, на автомобиле колеса могут иметь  наклон к дороге из-за применения независимой подвески, наклона дороги и других факторов.

Наклон колеса к дороге оказывает существенное влияние на работу шины и траекторию движения. При качении наклонного колеса в плоскости вращения со стороны  дороги на него действуют также боковая  сила и крутящий момент. Последний стремится повернуть колесо в сторону его наклона. Наклон колеса к дороге приводит к появлению боковой деформации шины, в результате которой центр контакта колеса с дорогой смещается в сторону наклона колеса. У наклонного колеса протектор шины изнашивается быстро и неравномерно, особенно в плечевой зоне со стороны наклона колеса. Таким образом, наклон колеса к дороге значительно уменьшает срок службы шины.

Наклон колеса к дороге изменяет угол увода. При  движении автомобиля на повороте, когда при поперечном наклоне кузова колесо наклоняется в сторону боковой силы, увод колеса увеличивается. Такое явление наблюдается у передних управляемых колес легковых автомобилей, имеющих независимую подвеску. Уменьшение склонности шин к боковому уводу и уменьшение наклона колеса к дороге положительно сказывается на продлении срока службы шин.

Информация о работе Устройство автомобильных шин