Автор работы: Пользователь скрыл имя, 05 Января 2013 в 23:55, шпаргалка
1. Возникновение и развитие науки о процессах и аппаратах. Классификация процессов пищевой технологии.
2. Барботажные массообменные аппараты с колпачковыми, клапанными и чешуйчатыми тарелками. Назначение, устройство, принцип действия и область применения.
3. Основные свойства пищевых продуктов, сырья, воды, пара и влажного воздуха. Физические и теплофизические
параметры.
Промежуточный вид фильтрования имеет место в случае одновременного закупоривания пор фильтровальной перегородки и отложения осадка на поверхности фильтровальной перегородки.
Для повышения скорости фильтрования при разделении суспензий с небольшой концентрацией твердой фазы либо содержащих слизистые вещества фильтрование проводят в присутствии вспомогательных веществ, препятствующих закупориванию пор фильтровальной перегородки. Слой вспомогательного вещества наносят на фильтровальную перегородку перед фильтрованием суспензии. В качестве вспомогательных веществ используют тонкодисперсные угли, перлит, асбест, кизельгур, фиброфло, аксанит и другие материалы.
Смесительные теплообменники бывают мокрого и сухого типов. теплота в них передается от одного теплоносителя к другому при их смешении.
Мокрый прямоточный конденсатор предназначен для конденсации пара водой. Охлаждающая вода вводится в конденсатор через сопла. Распыление воды значительно увеличивает площадь поверхности теплообмена между паром и водой. При взаимодействии капелек воды с паром пар конденсируется. Конденсат, вода и несконденсировавшиеся газы откачиваются из конденсатора мокровоздушным насосом. Температуру воздуха принимают равной температуре охлаждающей воды на выходе из конденсатора: tB=tB K.
В противоточном сухом конденсаторе смешения (рис. 14.26) взаимодействие пара и охлаждающей воды происходит в противотоке. Охлаждающая вода поступает на верхнюю перфорированную тарелку конденсатора, а пар — под нижнюю тарелку. Вода протекает с тарелки на тарелку в виде тонких струй через отверстия и борта. Взаимодействие пара с жидкостью происходит в межтарельчатом объеме конденсатора. Образовавшийся в результате конденсации пара конденсат вместе с водой выводится через барометрическую трубу, конец которой опущен в колодец, а воздух отсасывается через ловушку вакуум-насосом. В связи с этим такие конденсаторы иногда называют барометрическими.
Процесс конденсации
в барометрических
Для уравновешивания разности давлений в барометрическом конденсаторе и атмосферного служит столб жидкости, находящейся барометрической трубе.
Фильтрование с образованием осадка на поверхности фильтрующей перегородки имеет место, когда диаметр твердых частиц больше диаметра пор перегородки (рис. 8.1,а). Этот способ осуществим при концентрации твердой фазы суспензии более 1 мае. %, когда создаются благоприятные условия для образования сводиков над входами в поры фильтровальной перегородки. Образованию сводиков способствует увеличение скорости осаждения и концентрации твердой фазы в суспензии.
Барабанные сушилки применяют для сушки свекловичного жома, зерно-картофельной барды, кукурузных ростков и мезги, зерна и сахара-песка. Сушка в барабанных сушилках происходит при атмосферном давлении. Теплоносителем являются воздух либо топочные газы.
Барабанные сушилки (рис.
22.19) имеют цилиндрический полый
горизонтальный барабан, установленный
под небольшим углом к горизонт
Для улучшения контакта материала с сушильным агентом в барабане устанавливают внутреннюю насадку, которая при вращении барабана способствует перемешиванию материала и улучшает обтекание его сушильным агентом. Тип насадки выбирают в зависимости от свойств материала. На рис. 22.20 показаны некоторые типы внутренних насадок. Подъемно-лопастную насадку используют для сушки крупнокусковых и склонных к налипанию материалов. Для сушки мелкокусковых, сыпучих материалов применяют распределительную насадку. Газы и материал могут двигаться прямотоком и противотоком. При прямотоке удается избежать перегрева материала, так как при этом горячие газы взаимодействуют с материалом с высокой влажностью. Чтобы исключить большой унос пыли, газы просасываются через барабан вентилятором со скоростью 2...3 м/с. Перед выбросом в атмосферу отработанные газы очищаются в циклоне.
Фильтрование с закупориванием пор происходит,
когда твердые частицы проникают в поры фильтровальной перегородки. Закупоривание пор твердыми частицами наблюдается уже в начальный период процесса фильтрования, что снижает производительность фильтра. Для поддержания ее на должном уровне фильтр регенерируют, промывая обратным током жидкости либо прокаливая металлические фильтровальные перегородки.
Распылительные сушилки предназначены для сушки растворов, суспензий и пастообразных материалов. Сушкой распылением получают сухое молоко, молочно-овощные концентраты, пищевые и кормовые дрожжи, яичный порошок и другие продукты.
Распылительные сушилки представляют собой в большинстве случаев коническо-цилиндрический аппарат, в котором происходит диспергирование материала при помощи специальных диспергато-ров в поток теплоносителя. В качестве диспергаторов применяют центробежные распылители, пневматические и механические форсунки.
При непосредственном контакте теплоносителя — воздуха с распыленным материалом почти мгновенно протекает тепломассооб-менный процесс. Продолжительность пребывания материала в сушилке не превышает 50 с.
Преимущество распылительных
сушилок — возможность использо
Однако распылительные
сушилки имеют сравнительно неболь
шой удельный съем влаги в
пределах до 20 кг/м3, большой расход
теплоносителя и, как следствие,
значительную материало- и
энергоемкость.
1.вентилятор
2.колорифер
3.корпус сушилки
4.разбрызгивающее устройство
5.циклон
6.рукавный фильтр
7.внек для выгрузки
К процессам обычного фильтрования принято относить гидромеханические процессы, не осложненные физико-химическими явлениями. На нашей схеме такие процессы проходят на фильтрующих перегородках с диаметром пор от 1 мкм и более.
Процессы на перегородках с диаметром пор порядка 0,1 до нескольких микрометров принято относить к микрофильтрации. В этих процессах могут отделяться как мельчайшие частицы механической примеси, так и отдельные клеточные организмы и частицы клеток, как, например, дрожжевые клетки в процессах микрофильтрации продуктов брожения. Процессы микрофильтрации осложняются образованием гелеобразных слоев на поверхности фильтрующей перегородки, которую в дальнейшем будем называть микрофильтрационной мембраной. Между гель-слоем и мембраной возникает физическое или физико-химическое взаимодействие, приводящее иногда к полной закупорке пор и прекращению процесса. В каждом случае следует учитывать, что проницаемость гель-слоя во много раз ниже проницаемости самой мембраны и именно она определяет производительность процесса.
Процессы ультрафильтрации выполняют на мембранах со средним диаметром пор от 0,01 до 0,1 мкм, называемых улыпрафильтра-ционными мембранами. В процессах ультрафильтрации разделяют растворы, содержащие крупные молекулы, например молекулы полимеров, в том числе молекулы белков.
Мембраны для процессов обратно
Процессы микрофильтрации, ультрафильтрации и обратного осмоса осуществляют под избыточным давлением, и поэтому их принято называть баромембранными процессами.
На рис. 8.4 приведена
диаграмма с указанием
Остается добавить, что приведенные границы размеров пор в действительности весьма условны, поскольку характер процесса в значительной степени зависит и от других факторов, о чем будет сказано ниже. Кроме того, некоторые разные по своей природе процессы осуществляются на мембранах с порами одного размера. Например, процессы испарения через мембрану, диализ и электродиализ, как и обратный осмос, осуществляются на мембранах с порами размером менее 10 нм (100 А).
Кристаллизаторы по принципу действия делятся на аппараты периодического и непрерывного действия с отгонкой части растворителя и с охлаждением раствора. кристаллизация с частичной отгонкой воды осуществляется в вакуум-аппаратах.
Кристаллизаторы непрерывного действия состоят из концентратора, кристаллогенератора и камеры роста кристаллов. Конструкция аппарата должна обеспечивать интенсивную циркуляцию, препятствующую осаждению кристаллов в аппарате, улучшающую теплопередачу и обеспечивающую получение равномерных по величине кристаллов.
представлен вакуумный кристаллизатор непрерывного действия, применяемый в сахарном производстве. Концентратор и кристаллогенератор выполнены в виде кольцевых сегментов с трубчатой поверхностью нагрева. Концентратор герметически отделен от других узлов аппарата, что позволяет создавать в нем избыточное давление, не зависимое от давления в других частях аппарата. Кристаллоератор верхней открытой частью соединен
с надутфельным пространством
камеры роста кристаллов. Камера роста
кристаллов выполнена в виде цилиндра,
снабженного типовой поверхност
Простейшие кристаллизаторы периодического действия — вертикальные цилиндрические аппараты со змеевиками и механическими мешалками. Процесс кристаллизации в них ведется одновременно с охлаждением раствора.
В пищевой технологии применяют в основном два типа кристаллизаторов: корытного типа и вращающиеся барабанные.
На рис. 23.6 показан кристаллизатор корытного типа с ленточной мешалкой. Вместо ленточной мешалки может использоваться шнековая мешалка, которая выполнена в виде бесконечного винта. Средний размер кристаллов в таких кристаллизаторах не превышает 0,5...0,6 мм.
Кристаллизаторы корытного типа довольно широко распространены в промышленности Они просты в обслуживании и надежны в работе.
Барабанные кристаллизаторы бывают с водяным и воздушным охлаждением. При воздушном охлаждении кристаллы получаются более крупными из-за низкого коэффициента теплоотдачи от раствора к воздуху, но при этом производительность кристаллизатора значительно ниже, чем при водяном охлаждении.
Барабанный кристаллизатор представляет собой вращающийся цилиндрический барабан, наклоненный по ходу раствора к горизонту (рис. 23.7). Раствор поступает с верхнего конца барабана, а кристаллы выгружаются с нижнего конца При вращении барабана кристаллизатора раствор смачивает стенки, увеличивая тем самым площадь поверхности испарения воды.
Для перемешивания жидких сред используют несколько способов: пневматический, циркуляционный, статический и механический с помощью мешалок.
Пневматическое перемешивание осуществляют с помощью сжатого газа (в большинстве случаев воздуха), пропускаемого через слой перемешиваемой жидкости. Для равномерного распределения газа в слое жидкости газ подается в смеситель через барботер. Барботер представляет собой ряд перфорированных труб, расположенных у днища смесителя по окружности или спирали.
В ряде случаев перемешивание осуществляется с помощью эжекторов.
Интенсивность перемешивания
определяется количеством газа, пропускаемого
в единицу времени через