Автор работы: Пользователь скрыл имя, 11 Января 2012 в 13:20, реферат
Такие потрясения, как энергетический кризис 1973 г. и Чернобыльская катастрофа 1986 г., заставили большинство стран пересмотреть свою энергетическую политику в отношении темпов и перспектив использования возобновляемых источников энергии (ВИЗ).
Переработка
животноводческих отходов в биогаз
и удобрения
Содержание
Такие потрясения, как энергетический кризис 1973 г. и Чернобыльская катастрофа 1986 г., заставили большинство стран пересмотреть свою энергетическую политику в отношении темпов и перспектив использования возобновляемых источников энергии (ВИЗ).
Стало ясно, что недостаточно развить экологически чистую энергетику только в своей стране, когда соседние страны продолжают строительство и эксплуатацию атомных объектов, подобных по надежности четвертому блоку Чернобыльской АЭС. Необходимо объединение усилий ученых разных стран в области развития нетрадиционной энергетики.
Отрицательные тенденции развития традиционной энергетики обусловлены в основном наличием двух факторов – быстрым истощением природных ресурсов и загрязнением окружающей среды. Поданным ООН, истощение залежей угля предполагается в 2082—2500 г.г.
Перспективные
технологии традиционной энергетики повышают
эффективность использования
В связи с этим возникает необходимость выявления возможностей рационального использования ресурсов традиционной энергетики с одной стороны и развитие научно-технических работ по использованию нетрадиционных и возобновляемых источников энергии — с другой.
В нетрадиционной энергетике особое место занимает переработка биомассы (органических сельскохозяйственных и бытовых отходов) метановым брожением с получением биогаза, содержащего около 70% метана, и обеззараженных органических удобрений. Чрезвычайно важна утилизация биомассы в сельском хозяйстве, где на различные технологические нужды расходуется большое количество топлива и непрерывно растет потребность в высококачественных удобрениях. Всего в мире в настоящее время используется или разрабатывается около 60-ти разновидностей биогазовых технологий.
Биогаз — это смесь метана
и углекислого газа, образующаяся
в специальных реакторах —
метантенках, устроенных и
Человечество научилось использовать биогаз давно. В 1 тысячелетии до н. э. на территории современной Германии уже существовали примитивные биогазовые установки. Алеманам, населявшим заболоченные земли бассейна Эльбы, чудились Драконы в корягах на болоте. Они полагали, что горючий газ, скапливающийся в ямах на болотах — это дыхание Дракона. Чтобы задобрить Дракона, в болото бросали жертвоприношения и остатки пищи. Люди верили, что Дракон приходит ночью и его дыхание остаётся в ямах. Алеманы додумались шить из кожи тенты, накрывать ими болото, отводить газ по кожаным же трубам к своему жилищу и сжигать его для приготовления пищи. Оно и понятно, ведь сухие дрова найти было трудно, а болотный газ (биогаз) отлично решал эту проблему.
В XVII веке Ян Баптист Ван Гельмонт обнаружил, что разлагающаяся биомасса выделяет воспламеняющиеся газы. Алессандро Вольта в 1776 году пришёл к выводу о существовании зависимости между количеством разлагающейся биомассы и количеством выделяемого газа. В 1808 году сэр Хэмфри Дэви обнаружил метан в биогазе.
Первая задокументированная биогазовая установка была построена в Бомбее, Индия в 1859 году. В 1895 году биогаз применялся в Великобритании для уличного освещения. В 1930 году, с развитием микробиологии, были обнаружены бактерии, участвующие в процессе производства биогаза.
Биогаз состоит из 50—87 % метана, 13—50 % CO2, незначительные примеси H2 и H2S. После очистки биогаза от СО2 получается биометан. Биометан — полный аналог природного газа, отличие только в происхождении.
Поскольку только метан поставляет энергию из биогаза, целесообразно, для описания качества газа, выхода газа и количества газа все относить к метану, с его нормируемыми показателями. Объем газов зависит от температуры и давления. Высокие температуры приводят к расширению газа и к уменьшаемому вместе с объемом уровню калорийности и наоборот. Кроме того при возрастании влажности калорийность газа также снижается. Чтобы выходы газа можно было сравнить между собой, необходимо их соотносить с нормальным состоянием (температура 0 °C, атмосферное давление 1,01325 bar, относительная влажность газа 0%). В целом данные о производстве газа выражают в литрах (л) или м3 метана на кг органического сухого вещества (оСВ), это намного точнее и красноречивее нежели данные в м3 биогаза в м3 свежего субстрата.
Перечень органических отходов, пригодных для производства биогаза довольно обширен: навоз, птичий помёт, зерновая и меласная послеспиртовая барда, пивная дробина, свекольный жом, фекальные осадки, отходы рыбного и забойного цеха (кровь, жир, кишки, каныга), трава, бытовые отходы, отходы молокозаводов — соленая и сладкая молочная сыворотка, отходы производства биодизеля — технический глицерин от производства биодизеля из рапса, отходы от производства соков — жом фруктовый, ягодный, овощной, виноградная выжимка, водоросли, отходы производства крахмала и патоки — мезга и сироп, отходы переработки картофеля, производства чипсов — очистки, шкурки, гнилые клубни, кофейная пульпа.
Кроме отходов биогаз можно производить из специально выращенных энергетических культур, например, из силосной кукурузы или сильфия, а также водорослей. Выход газа может достигать до 300 м³ из 1 тонны.
Выход биогаза зависит от содержания сухого вещества и вида используемого сырья. Из тонны навоза крупного рогатого скота получается 50—65 м³ биогаза с содержанием метана 60 %, 150—500 м³ биогаза из различных видов растений с содержанием метана до 70 %. Максимальное количество биогаза — это 1300 м³ с содержанием метана до 87 % — можно получить из жира.
Различают теоретический (физически возможный) и технически-реализуемый выход газа. В 1950-70-х годах технически возможный выход газа составлял всего 20-30 % от теоретического. Сегодня применение энзимов, бустеров для искусственной деградации сырья (например, ультразвуковых или жидкостных кавитаторов) и других приспособлений позволяет увеличивать выход биогаза на самой обычно установке с 60 % до 95 %.
В биогазовых расчётах используется понятие сухого вещества (СВ или английское TS) или сухого остатка (СО). Вода, содержащаяся в биомассе, не даёт газа.
На практике из 1 кг сухого вещества получают от 300 до 500 литров биогаза.
Чтобы посчитать выход биогаза из конкретного сырья, необходимо провести лабораторные испытания или посмотреть справочные данные и определить содержание жиров, белков и углеводов. При определении последних важно узнать процентное содержание быстроразлагаемых (фруктоза, сахар, сахароза, крахмал) и трудноразлагаемых веществ (например, целлюлоза, гемицеллюлоза, лигнин). Определив содержание веществ, можно вычислить выход газа для каждого вещества по отдельности и затем сложить.
Раньше, когда не было науки о биогазе и биогаз ассоциировался с навозом, применяли понятие «животной единицы». Сегодня, когда биогаз научились получать из произвольного органического сырья, это понятие отошло и перестало использоваться.
Производство
биогаза позволяет
Остаток, образующийся в процессе получения биогаза, или как его еще называют — шлам — содержит значительное количество питательных веществ и может быть использован в качестве удобрения. Состав остатка, полученного при анаэробной переработке животноводческих отходов, зависит от химического состава исходного сырья, загружаемого в реактор. В условиях, благоприятных для анаэробного сбраживания, обычно разлагается около 70% органических веществ, а 30% содержится в остатке.
Основное преимущество
Это позволяет снизить применение химических удобрений, сокращается нагрузка на грунтовые воды.
Существуют промышленные и кустарные установки. Промышленные установки отличаются от кустарных наличием механизации, систем подогрева, гомогенизации, автоматики. Наиболее распространённый промышленный метод — анаэробное сбраживание в метантенках.
Хорошая биогазовая установка должна иметь необходимые части:
Принцип работы установки.
Биомасса
(отходы или зеленая масса) периодически
подаются с помощью насосной станции
или загрузчика в реактор. Реактор представляет
собой подогреваемый и утепленный резервуар,
оборудованный миксерами. Стройматериалом
для промышленного резервуара чаще всего
служит железобетон или сталь с покрытием.
В малых установках иногда используются
композиционные материалы. В реакторе
живут полезные бактерии, питающиеся биомассой.
Продуктом жизнедеятельности бактерий
является биогаз. Для поддержания жизни
бактерий требуется подача корма, подогрев
до 35-38 °С и периодическое перемешивание.
Образующийся биогаз скапливается в хранилище
(газгольдере), затем проходит систему
очистки и подается к потребителям (котел
или электрогенератор). Реактор работает
без доступа воздуха, герметичен и неопасен.
Для
сбраживания некоторых видов
сырья в чистом виде требуется
особая двухстадийная технология. Например,
птичий помет, спиртовая барда не перерабатываются
в биогаз в обычном реакторе. Для переработки
такого сырья необходим дополнительно
реактор гидролиза. Такой реактор позволяет
контролировать уровень кислотности,
таким образом бактерии не погибают из-за
повышения содержания кислот или щелочей.
Возможна переработка этих же субстратов
по одностадийной технологии, но при коферментации
(смешивании) с другими видами сырья, например,
с навозом или силосом.
Факторы, влияющие на процесс брожения
Температура.
Метановые бактерии проявляют свою жизнедеятельность в пределах температуры 0-70ºС. Если температура выше они начинают гибнуть, за исключением нескольких штаммов, которые могут жить при температуре среды до 90ºС. При минусовой температуре они выживают, но прекращают свою жизнедеятельность. В литературе как нижнюю границу температуры указывают 3-4ºС.
Площадь поверхности частиц сырья.
Принципиальным
является, что чем меньше частички
субстрата, тем лучше. Чем больше
площадь взаимодействия для бактерий
и чем более волокнистый
Информация о работе Переработка животноводческих отходов в биогаз и удобрения