Автор работы: Пользователь скрыл имя, 12 Декабря 2010 в 22:05, контрольная работа
В 1964 г. на церемонии вручения Нобелевской премии в Стокгольме акад. А. М. Прохоров сказал: «Квантовая электроника возникла в конце 1954 и начале 1955 г., фундаментом квантовой электроники следует считать явление индуцированного излучения, предсказанное А. Эйнштейном в 1917 г.»
Введение. 3
1.Свойства лазерного излучения. 8
2. Принцип действия лазера.
3. Классификация лазеров.
4. Характеристики лазерного излучения.
5. Виды лазеров.
5.1 Твердотельный лазер.
5.2 Газовый лазер.
5.4 Полупроводниковый лазер.
5.5 Химический лазер.
5.6 Ультрафиолетовый лазер.
5.7 Лазер на свободных электронах.
5.8 Лазер на иттрий-алюминиевом гранате (ИАГ).
5.9 Апротонный жидкостный лазер.
5.10 Лазер на парах меди.
5.11 Газодинамический лазер.
6. Применение лазеров.
6.1 Лазеры в медицине.
6.2 Лазеры в информационных технологиях.
6.3 Применение лазеров в военном деле.
6.4 Лазеры в промышленности. Обработка материалов и сварка.
Заключение.
Для
усиления генерации света лазер
снабжен также оптическим резонатором,
рис. 2. Он создается двумя зеркалами, одно
из которых имеет большой коэффициент
отражения, а второе полупрозрачно. Зеркала
обеспечивают многократное отражение
и прохождение излучения через активную
среду, что приводит к увеличению числа
фотонов, испущенных возбуждёнными атомами,
и усилению индуцированного когерентного
излучения. В результате возникает лавина
фотонов, движущихся вдоль оси резонатора
и частично выходящих в виде узкого пучка
света через полупрозрачное зеркало. Фотоны,
испущенные по другим направлениям, выходят
из активной среды, не испытав многократного
отражения от зеркал.
Помимо отражательных свойств, оптический резонатор, подобно механическим резонаторам, например, трубам и декам музыкальных инструментов, обладает резонансными свойствами. Электромагнитные волны могут возбуждаться в нём эффективно только при условии, что их частоты совпадают с собственными частотами резонатора. Наиболее благоприятные условия для лазерной генерации возникают в том случае, когда частота n = ΔЕ/h, отвечающая квантовому переходу атомов активной среды, и одна из собственных частот резонатора совпадают. В этом случае в резонаторе создается стоячая световая волна, и при данной мощности накачки лазер излучает свет наибольшей интенсивности. При расстройке между указанными частотами генерируемая мощность уменьшается, а при большой расстройке генерация света может вовсе исчезнуть.
Чтобы увеличить число атомов, участвующих почти одновременно в усилении светового потока, необходимо задержать начало генерации, чтобы накопить как можно больше возбужденных атомов, создающих инверсную заселенность, для чего надо поднять порог генерации лазера и уменьшить добротность. Порогом генерации называют предельное число атомов, способных находиться в возбужденном состоянии. Это можно сделать посредством увеличения потерь светового потока. Например, можно нарушить параллельность зеркал, что резко уменьшит добротность системы. Если при такой ситуации начать накачку, то даже при значительной инверсии заселенности уровней генерация не начинается, поскольку порог генерации высок. Поворот зеркала до параллельного другому зеркалу положения повышает добротность системы и тем самым понижает порог генерации. Когда добротность системы обеспечит начало генерации, инверсная заселенность уровней будет весьма значительной. Поэтому мощность излучения лазера сильно увеличивается. Такой способ управления генерацией лазера называется методом модулированной добротности.
Продолжительность
импульса излучения зависит от того,
в течение какого времени вследствие
излучения инверсная
Более частое повторение импульсов может быть достигнуто модуляцией добротности с помощью ячейки Керра (быстродействующий модулятор света). Ячейку Керра и поляризатор помещают в резонатор. Поляризатор обеспечивает генерацию лишь излучения определенной поляризации, а ячейка Керра ориентирована так, чтобы при наложении на нее напряжения не проходил свет с этой поляризацией. При накачке лазера напряжение с ячейки Керра снимается в такой момент времени, чтобы начавшаяся при этом генерация была наиболее сильной.
Ячейка Керра — устройство, основанное на эффекте Керра — явлении возникновения под действием электрического поля в оптически изотропных средах двойного лучепреломления. Отличается высоким быстродействием (10 − 9 ÷ 10 − 12 секунды). Состоит из среды с Керровской нелинейностью (например CS2 — сероулеродом) помещённой между обкладок конденсатора. При прохождении мощного импульса электрического тока через ячейку оптические свойства среды меняются так, что свет меняет направление поляризации при прохождении ячейки
Применительно к лазерным технологиям используется термин гигантский импульс. Таковым называют импульс, обладающей очень большой энергией при сверхмалой длительности.
Сама
по себе идея создания гигантского
импульса проста при использовании
оптического затвора - специального
устройства, которое по сигналу может
переходить из открытого состояния в закрытое
и наоборот. В открытом состоянии затвор
пропускает через себя лазерное излучение,
в закрытом - поглощает или отклоняет его
в другую сторону. При создании гигантского
импульса затвор переводят в закрытое
состояние еще до того, как начнется высвечивание
энергии накачки. Затем, по мере поглощения
энергии активные центры (атомы, участвующие
в генерации) переходят в массовом порядке
на долгоживущий верхний уровень. Генерация
в лазере пока не осуществляется, ведь
затвор закрыт. В результате на рассматриваемом
уровне накапливается чрезвычайно большое
число активных центров - создается очень
сильная инверсная заселенность уровней.
В определенный момент затвор переключают
в открытое состояние. В некотором отношении
это похоже на то, если бы высокая плотина,
создававшая огромный перепад уровней
воды, вдруг неожиданно исчезла. Происходит
быстрое и очень бурное высвечивание активных
центров, в результате чего и рождается
короткий и мощный лазерный импульс - гигантский
импульс. Его длительность составляет
10-8 с., а максимальная мощность 108
Вт.
3. Классификация лазеров.
Принять различать два типа лазеров: усилители и генераторы. На выходе усилителя появляется лазерное излучение, когда на его вход (а сам он уже находится в возбужденном состоянии) поступает незначительный сигнал на частоте перехода. Именно этот сигнал стимулирует возбужденные частицы к отдаче энергии. Происходит лавинообразное усиление. Таким образом — на входе слабое излучение, на выходе — усиленное.
С генератором дело обстоит иначе. На его вход излучение на частоте перехода уже не подают, а возбуждают и, более того, перевозбуждают активное вещество. Причем если активное вещество находится в перевозбужденном состоянии, то существенно растет вероятность самопроизвольного перехода одной или нескольких частиц с верхнего уровня на нижний. Это приводит к возникновению стимулированного излучения.
Второй подход к классификации лазеров связан с физическим состоянием активного вещества. С этой точки зрения лазеры бывают твердотельными (например, рубиновый, стеклянный или сапфировый), газовыми (например, гелий-неоновый, аргоновый и т. п.), жидкостными, если в качестве активного, вещества используется полупроводниковый переход, то лазер называют полупроводниковым.
Третий подход к классификации связан со способом возбуждения активного вещества. Различают следующие лазеры: с возбуждением за счет оптического излучения, с возбуждением потоком электронов, с возбуждением солнечной энергией, с возбуждением за счет энергий взрывающихся проволочек, с возбуждением химической энергией, с возбуждением с помощью ядерного излучения (последние привлекают сейчас пристальное внимание зарубежных военных специалистов). Различают также лазеры по характеру излучаемой энергии и ее спектральному составу. Если энергия излучается импульсно, то говорят об импульсных лазерах, если непрерывно, то лазер называют лазером с непрерывным излучением. Есть лазеры и со смешанным режимом работы, например полупроводниковые. Если излучение лазера сосредоточено в узком интервале длин волн, то лазер называют монохроматичным, если в широком интервале, то говорят о широкополосном лазере.
Еще один вид классификации основан на использовании понятия выходной мощности. Лазеры, у которых непрерывная (средняя) выходная мощность более 106 Вт, называют высокомощными. При выходной мощности в диапазоне Ю5...103Вт имеем лазеры средней мощности. Если же выходная мощность менее 10-3 Вт, то говорят о маломощных лазерах.
В
зависимости от конструкции открытого
зеркального резонатора различают
лазеры с постоянной добротностью и лазеры
с модулированной добротностью — у такого
лазера одно из зеркал может быть размещено
в частности, на оси электродвигателя,
который вращает это зеркало. В данном
случае добротность резонатора периодически
меняется от нулевого до максимального
значения. Такой лазер называют лазером
с Q-модуляцией.
4.
Характеристики лазерного
Одной из характеристик лазеров является длина волны излучаемой энергии. Диапазон волн лазерного излучения простирается от рентгеновского участка до дальнего инфракрасного, т. е. от 10-3 до 102 мкм. За областью 100 мкм лежит, образно говоря, «целина». Но она простирается только до миллиметрового участка, который осваивается радистами. Этот неосвоенный участок непрерывно сужается, и есть надежда, что его освоение завершится в ближайшее время. Доля, приходящаяся на различные типы генераторов, неодинакова. Наиболее широкий диапазон у газовых квантовых генераторов.
Другой важной характеристикой лазеров является энергия импульса. Она измеряется в джоулях и наибольшей величины достигает у твердотельных генераторов - порядка 103 Дж. Третьей характеристикой является мощность. Энергия в единицу времени и дает мощность. Газовые генераторы, которые излучают непрерывно, имеют мощность от 10-3 до 102 Вт. Милливаттную мощность имеют генераторы, использующие в качестве активной среды гелий-неоновую смесь. Мощность порядка 100 Вт имеют генераторы на С02. С твердотельными генераторами разговор о мощности имеет особый смысл. К примеру, если взять излучаемую энергию в 1 Дж, сосредоточенную в интервале времени в одну секунду, то мощность составит 1 Вт. Но длительность излучения генератора на рубине составляет 10-4 с, следовательно, мощность составляет 10000 Вт, т. е. 10 кВт. Если же длительность импульса уменьшена с помощью оптического затвора до 10-6 с, мощность составляет 106 Вт, т. е. мегаватт. Это не предел! Можно увеличить энергию в импульсе до 103 Дж и сократить его длительность до 10-9 с и тогда мощность достигнет 1012 Вт. А это очень большая мощность. Известно, что когда на металл приходится интенсивность луча, достигающая 105 Вт/см2, то начинается плавление металла, при интенсивности 107 Вт/см2 — кипение металла, а при 109 Вт/см2 лазерное излучение начинает сильно ионизировать пары вещества, превращая их в плазму.
Еще одной важной характеристикой лазера является расходимость лазерного луча. Наиболее узкий луч имеют газовые лазеры. Он составляет величину в несколько угловых минут. Расходимость луча твердотельных лазеров около 1...3 угловых градусов. Полупроводниковые лазеры имеют лепестковый раскрыв излучения: в одной плоскости около одного градуса, в другой — около 10...15 угловых градусов.
Следующей важной характеристикой лазера является диапазон длин волн, в котором сосредоточено излучение, т. е. монохроматичность. У газовых лазеров монохроматичность очень высокая, она составляет 10-10, т. е. значительно выше, чем у газоразрядных ламп, которые раньше использовались как стандарты частоты. Твердотельные лазеры и особенно полупроводниковые имеют в своем излучении значительный диапазон частот, т. е. не отличаются высокой монохроматичностью.
Очень
важной характеристикой лазеров
является
коэффициент полезного действия. У твердо
тельных он составляет от 1 до 3,5%, У газовых
1…15%, у полупроводниковых 40...60%. Вместе
с тем принимаются всяческие меры для
повышения кпд лазеров, ибо низкий кпд
приводит к необходимости охлаждения
лазеров до температуры 4...77 К, а это сразу
усложняет конструкцию аппаратуры.
5. Виды лазеров.
5.1 Твердотельный лазер.
Функциональная
схема такого лазера приведена на рисунке:
Блок поджига