Контрольная работа по "Технологии материалов"

Автор работы: Пользователь скрыл имя, 11 Декабря 2012 в 17:32, контрольная работа

Краткое описание

Отжигом называется процесс термической обработки, заключающийся в нагреве стали до определенной температуры и последующем, как правило, медленном охлаждении с целью получения более равновесной структуры.

Основные виды отжига — полный, неполный (на зернистый перлит), изотермический, диффузионный, рекристаллизационный (хо-лоднодеформированной стали).

Содержимое работы - 1 файл

Міністерство науки і освіти України.doc

— 449.50 Кб (Скачать файл)

Процесс можно  разделить на два периода. Первый период (окисление сульфида железа с получением белого штейна) длится около 6-024 часов в зависимости от содержания меди в штейне. Загрузку кварцевого флюса начинают с начала продувки. По мере накопления шлака его частично удаляют и заливают в конвертер новую порцию исходного штейна, поддерживая определенный уровень штейна в конвертере.

В первом периоде  протекают следующие реакции  окисления сульфидов:

2FeS + 3O2 = 2FeO + 2SO2 + 930360 Дж

2Cu2S + 3O2 = 2Cu2O + 2SO2 + 765600 Дж

Пока существует FeS, закись меди не устойчива и превращается в сульфид:

Cu2O + FeS = Cu2S + FeO

Закись железа шлакуется добавляемым в конвертер  кварцевым флюсом:

2FeO + SiO2 = (FeO) ( SiO2

При недостатке SiO2 закись железа окисляется до магнетита:

6FeO + O2 = 2Fe3O4

, который переходит  в шлак.

Температура заливаемого  штейна в результате протекания этих экзотермических реакций повышается с 1100-1200 до 1250-1350 0С . Более высокая  температура нежелательна, и поэтому  при продувке бедных штейнов, содержащих много FeS, добавляют охладители - твердый штейн, сплески меди.

Из предыдущего  следует, что в конвертере остается главным образом так называемый белый штейн, состоящий из сульфидов  меди, а шлак сливается в процессе плавки. Он состоит в основном из различных оксидов железа (магнетита, закиси железа) и кремнезема, а также небольших количеств глинозема, окиси кальция и окиси магния. При этом, как следует из вышесказанного, содержание магнетита в шлаке определяется содержанием магнетита в шлаке определяется содержанием кремнезема. В шлаке остается 1,8-3,0% меди. Для ее извлечения шлак в жидком виде направляют в отражательную печь или в горн шахтной печи.

Во втором периоде, называемом реакционным, продолжительность  которого составляет 2-3 часа, из белого штейна образуется черновая медь. В  этот период окисляется сульфид меди и по обменной реакции выделяется медь:

2Cu2S + 3O2 = 2Cu2O + 2SO2

Cu2S + 2Cu2O = 6Cu + O2

Таким образом, в результате продувки получают черновую медь, содержащая 98,4-99,4% - меди, 0,01-0,04% железа, 0,02-0,1% серы, и небольшое количество никеля, олова, мышьяка, серебра, золота и конвертерный шлак, содержащий 22-30% SiO2, 47-70% FeO, около 3% Al2O3 и 1.5-2.5% меди.

 

Рафинирование меди

Для получения  меди необходимо чистоты черновую медь подвергают огневому и электролитическому рафинированию, и при этом, помимо удаления вредных примесей, можно извлечь также благородные металлы. Огневое рафинирование черновой меди проводят в печах, напоминающие отражательные печи, используемые для выплавки штейна из медных концентратов. Электролиз ведут в ваннах, футурованных внутри свинцом или винипластом.

На большинстве  современных заводов плавку ведут  в отражательных или в электрических  печах. В отражательных печах  рабочее пространство вытянуто в  горизонтальном направлении; площадь  пода 300 м2 и более (30 м х 10 м); необходимое для плавления тепло получают сжиганием углеродистого топлива (природный газ, мазут) в газовом пространстве над поверхностью ванны. В электрических печах тепло получают пропусканием через расплавленный шлак электрического тока (ток подводится к шлаку через погруженные в него графитовые электроды).

Однако и  отражательная, и электрическая  плавки, основанные на внешних источниках теплоты, - процессы несовершенные. Сульфиды, составляющие основные массу медных концентратов, обладают высокой теплотворной способностью. Поэтому все больше внедряются методы плавки, в которых используется теплота сжигания сульфидов (окислитель - подогретый воздух, воздух, обогащенный кислородом, или технический кислород). Мелкие, предварительно высушенные сульфидные концентраты вдувают струей кислорода или воздуха в раскаленную до высокой температуры печь. Частицы горят во взвешенном состоянии (кислородно-взвешенная плавка).

Богатые кусковые сульфидные руды (2-3% Сu) с высоким  содержанием серы (35-42% S) в ряде случаев непосредственно направляются на плавку в шахтных печах (печи с вертикально расположенным рабочим пространством). В одной из разновидностей шахтной плавки (медносерная плавка) в шихту добавляют мелкий кокс, восстановляющий в верхних горизонтах печи SO2 до элементарной серы. Медь в этом процессе также концентрируется в штейне.

Получающийся  при плавке жидкий штейн (в основном Cu2S, FeS) заливают в конвертер - цилиндрический резервуар из листовой стали, выложенный изнутри магнезитовым кирпичом, снабженный боковым рядом фурм для вдувания воздуха и устройством для поворачивания вокруг оси. Через слой штейна продувают сжатый воздух. Конвертирование штейнов протекает в две стадии. Сначала окисляется сульфид железа, и для связывания оксидов железа в конвертер добавляют кварц; образуется конвертерный шлак. Затем окисляется сульфид меди с образованием металлической Меди и SO2. Эту черновую Медь разливают в формы. Слитки (а иногда непосредственно расплавленную черновую Медь) с целью извлечения ценных спутников (Au, Ag, Se, Fe, Bi и других) и удаления вредных примесей направляют на огневое рафинирование. Оно основано на большем, чем у меди, сродстве металлов-примесей к кислороду: Fe, Zn, Co и частично Ni и другие в виде оксидов переходят в шлак, а сера (в виде SO2) удаляется с газами. После удаления шлака Медь для восстановления растворенной в ней Cu2О "дразнят", погружая в жидкий металл концы сырых березовых или сосновых бревен, после чего отливают его в плоские формы. Для электролитического рафинирования эти слитки подвешивают в ванне с раствором CuSO4, подкисленным H2SO4. Они служат анодами. При пропускании тока аноды растворяются, а чистая Медь отлагается на катодах - тонких медных листах, также получаемых электролизом в специальных матричных ваннах. Для выделения плотных гладких осадков в электролит вводят поверхностно-активные добавки (столярный клей, тиомочевину и другие). Полученную катодную Медь промывают водой и переплавляют. Благородные металлы, Se, Те и других ценные спутники Медь концентрируются в анодном шламе, из которого их извлекают специальной переработкой. Никель концентрируется в электролите; выводя часть растворов на упаривание и кристаллизацию, можно получить Ni в виде никелевого купороса.

Наряду с  пирометаллургическими применяют  также гидрометаллургические методы получения Меди (преимущественно из бедных окисленных и самородных руд). Эти методы основаны на избирательном растворении медьсодержащих минералов, обычно в слабых растворах H2SO4 или аммиака. Из раствора Медь либо осаждают железом, либо выделяют электролизом с нерастворимыми анодами. Весьма перспективны применительно к смешанным рудам комбинированные гидрофлотационные методы, при которых кислородные соединения Меди растворяются в сернокислых растворах, а сульфиды выделяются флотацией. Получают распространение и автоклавные гидрометаллургические процессы, идущие при повышенных температурах и давлении.

 

Технологические особенности изготовления отливок из стали.

 

      Плавка и разливка стали

     Любое металлоизделие можно изготовить различными способами – сваркой, ковкой, литьем или иным способом. Но наиболее предпочтительными в использовании являются литые изделия. Необходимо отметить, что более 20% всех отливок в машиностроении изготовляют из стали. Этот металл применяют для производства большинства узлов и деталей в машинах и агрегатах, для производства различного инструмента, ответственных конструкций.

Литейным производством  называется отрасль машиностроения, занимающаяся изготовлением фасонных деталей или заготовок путем  заливки расплавленного металла в форму, полость которой имеет конфигурацию детали. После затвердевания металла в форме получается отливка (литая деталь или заготовка). Заготовки подвергаются в дальнейшем механической обработке. В машинах и промышленном оборудовании около 50% всех деталей изготовляют литьем.

Сталью считают сплав  железа с углеродом (до 2%). Детали сложной  конфигурации, к которым предъявляют  повышенные требования по прочности, ударной  вязкости или другим свойствам, обычно изготовляют из стали. В машиностроении применяют три группы литейных сталей: конструкционные, инструментальные и со специальными свойствами.

Из конструкционных сталей изготовляют детали, несущие главным  образом механические нагрузки (статические, динамические, вибрационные и др.). По химическому составу их подразделяют на углеродистые (низко- и среднеуглеродистые) и легированные, а по структуре – на ферритно-перлитного и перлитного классов.

Из инструментальных сталей изготовляют литой инструмент (режущий, мерительный, штамповочный и т.п.). По химическому составу их подразделяют на средне-, высокоуглеродистые и легированные стали перлитного, мартенситного и карбидного классов.

Из сталей со специальными свойствами (коррозионно-стойкие, жаропрочные, кислотоупорные, износостойкие) выполняют  литые изделия, подвергающиеся воздействию различных сред, высоких температур и нагрузок. Эти стали относят в основном к ферритному и аустенитному классам.

В литейных цехах наибольшее применение для плавки стали нашли  дуговые электропечи, индукционные электропечи с сердечником, индукционные электропечи без сердечника.

Выплавленную сталь выпускают  из плавильной печи в разливочный  ковш, из которого ее разливают в  изложницы или кристаллизаторы  установок для непрерывной разливки стали. В изложницах или кристаллизаторах сталь затвердевает, и получаются слитки, которые затем подвергают обработке.

Сталеразливочный ковш имеет  стальной сварной кожух, выложенный изнутри огнеупорным кирпичом. В  дне ковша имеется керамический стакан с отверстием для выпуска  стали. Отверстие в стакане закрывается и открывается стопорным устройством. Стопор поднимают и опускают рычажным механизмом вручную или с помощью гидравлического привода с дистанционным управлением. Ковш за две цапфы поднимают краном.

Изложницы – чугунные формы  для изготовления слитков. Конфигурация изложниц характеризуется формой поперечного и продольного сечений и зависит от сорта заливаемой стали. Изложницы выполняют квадратным, прямоугольным, круглым и многогранным поперечными сечениями.

Для разливки спокойной стали применяют изложницы, расширяющиеся кверху, а для разливки кипящей стали – изложницы, расширяющиеся книзу. Изложницы, расширяющиеся кверху, обычно имеют дно, а расширяющиеся книзу делают сквозными, без дна. Изложницы для разливки спокойной стали имеют прибыльные надставки, футерованные изнутри огнеупорной массой с малой теплопроводностью.

Для разливки стали применяют  три основных способа – в изложницу  сверху, в изложницу сифоном, на установках непрерывной разливки стали (УНРС). Для обычных углеродистых сталей используют разливку сверху; для легированных и высоколегированных сталей – разливку сифоном.

Наиболее прогрессивный  способ разливки – непрерывная разливки стали. Этот способ заключается в  том, что жидкую сталь из ковша  через промежуточное разливочное  устройство непрерывно подают в изложницу (охлаждается водой) без дна – кристаллизатор, из нижней части которого вытягивается затвердевающий слиток.

Перед заливкой металла в кристаллизатор вводят затравку, образующую его дно. Затравка имеет головку в форме ласточкина хвоста. Жидкий металл, попадая в кристаллизатор и на затравку, охлаждается, затвердевает, образуя корку. Затравка тянущими валками вытягивается из кристаллизатора вместе с затвердевающим слитком, сердцевина которого находится в жидком состоянии. Скорость вытягивания слитка из кристаллизатора зависит от сечения слитка. Например, скорость вытягивания прямоугольных слитков сечением 150х500 и 300х2000 мм равна 1 м/мин. На выходе из кристаллизатора слиток охлаждается водой. Из зоны охлаждения слиток выходит полностью затвердевшим и попадает в зону резки, где его разрезают газовым резаком на куски заданной длины. Для предотвращения приваривания слитка к стенкам кристаллизатора последний совершает возвратно-поступательное движение с шагом 10-50мм и частотой 10-100 циклов в минуту, а рабочая поверхность кристаллизатора смазывается специальными смазками. Высота кристаллизатора 500-1500мм. В них получаются слитки прямоугольного поперечного сечения с габаритными размерами от 150х500 до 300х2000мм, квадратного от 150х150 до 400х400мм, круглые в виде толстостенных труб.

Вследствие  направленного затвердевания и  непрерывного питания при усадке в слитках непрерывной разливки отсутствуют усадочные раковины, они имеют плотное строение и  мелкозернистую структуру. Поверхность  слитка получается хорошего качества. Выход годных заготовок может достигать 96-98% от массы разливаемой стали.

 

Литье в песчаные формы.

Независимо  от способа литья, отливки получают в литейной форме, полость которой соответствует конфигурации отливки.

Для стальных отливок  формовочные и стержневые смеси должны обладать большой противопригарностью, поэтому в них вместо обычной глины добавляют более огнеупорную глину.

Литье в песчаные формы включает следующие основные этапы:

- изготовление литейной формы;

- изготовление стержней;

- сборка форм;

- заливка форм сплавом;

- выбивка отливок из песчаной формы;

- очистка и обрубка отливок.

Изготовление  форм для стальных отливок отличается применением прибылей для питания  большой (6%) объемной усадки стали.

Стержни изготовляют  из уплотненной стержневой смеси и сушат для увеличения их прочности и газопроницаемости.

При сборке форм небольшие стержни устанавливают  вручную, большие – с помощью  крана.

Сплав заливают в форму с помощью ковша, конструкция  которого зависит от емкости и  свойств заливаемого сплава. При заливке формы подвергаются давлению жидкого металла, который стремиться приподнять верхнюю опоку, отчего по разъему может образоваться щель и металл выльется через нее из формы. Во избежание этого верхнюю полуформу скрепляют с нижней скобами или помещают на нее груз.

Для стального  заливаемого сплава ориентировочно принимают температуру от 1500ºС до 1600ºС. Температура заливаемого сплава зависит от толщины стенок отливки: чем меньше толщина отливки, тем  выше температура.

После заливки  и охлаждения металла в форме отливку из нее удаляют (выбивают), при этом форма разрушается. С места выбивки отливки транспортируют в отделение выбивки стержней или непосредственно в отделение очистки и обрубки отливок. Стержни выбивают из отливки вибрационными установками или струей воды. Воду тонкой струей под давлением 235-980 кН/м2 направляют на стержень. Вода с песком стекает в особый отстойник.

После выбивки  отливок из формы, на их поверхности остается пригоревшая формовочная смесь и заусенцы, которые очищают в обрубном отделении цеха. Основными способами очистки отливок являются:

  1. дробеметная или дробеструйная обработка, при которой струю чугунной или стальной дроби направляют на поверхность отливки с большой скоростью;
  2. обработка ударным действием гидравлической или пескогидравлической струей, при которой на поверхность отливки направляют струю воды с песком под давлением 35 атмосфер и очищают ее от пригоревшей к ней формовочной смеси.

Информация о работе Контрольная работа по "Технологии материалов"