Автор работы: Пользователь скрыл имя, 12 Декабря 2011 в 18:59, курсовая работа
Создание энергосистем и объединение их между собой на огромных территориях стало основным направлением развития электроэнергетики мира в 20 веке. Это обусловлено отличительной особенностью отрасли, в которой производство и потребление продукции происходят практически одновременно. Невозможно накопление больших количеств электроэнергии, а устойчивая работа электростанции и сетей обеспечивается в очень узком диапазоне основных параметров режима.
ВВЕДЕНИЕ
1 ОБЩАЯ ЧАСТЬ
1.1 Краткая характеристика электрооборудования ТП
1.2 Ведомость электрических нагрузок
2 РАСЧЕТНО-ТЕХНИЧЕСКАЯ ЧАСТЬ
2.1 Определение расчетной электрической нагрузки от силовых электроприемников на шинах 0,38 кВ цеховых ТП
2.2 Расчет и выбор компенсирующего устройства
2.3 Выбор напряжения и схемы питания силовых и осветительных нагрузок цеха
2.4 Расчет и выбор числа мощности цеховых трансформаторов
2.5 Расчет и выбор распределительной сети 0,38 кВ
2.5.1 Расчет и выбор защитной аппаратуры
2.5.2 Расчет и выбор проводов и кабелей
2.5.3 Расчет и выбор распределительных шкафов и шинопроводов
2.6 Расчет токов короткого замыкания
2.7 Расчет и выбор питающей линии
2.8 Расчет и выбор высоковольтного электрооборудования
2.9 Релейная защита
2.10 Учет и контроль электроэнергии
2.11 Расчет защитного заземления
3 ГРАФИЧЕСКАЯ ЧАСТЬ
3.1 Принципиальная однолинейная схема электрических присоединений
3.2 План расположения электрооборудования комплекса томатного сока
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
1) для каждой отходящей
линии электропередачи,
2) для межсистемных
линий электропередачи--по два
счетчика со стопорами,
3) на трансформаторах собственных нужд;
4) для линий хозяйственных
нужд или посторонних
Расчетные счетчики активной электроэнергии на подстанциях потребителей должны устанавливаться:
1) на вводе (приемном конце) линии электропередачи в подстанцию;
2) на стороне ВН трансформаторов при наличии электрической связи с другой подстанцией энергосистемы;
Схема подключения счетчиков типа ПСЧ-4 к трехфазной сети.
Рисунок 2.7 Подключение счетчиков к трехфазной сети с помощью трех трансформаторов тока и трех трансформаторов напряжения ( пунктиром показано цепь «0» для четырехпроводной сети.)
Счетчик электрической энергии статический, трехфазной, трехтрансформаторный, универсальный ПСЧ-4. Предназначен для учета прихода и расхода активной энергии в трех- и четырехпроводных сетях переменного тока номинальной частоты 50Гц, а также для передачи по линиям связи информационных данных на центральный пункт сбора информации энергосистемы.
Счетчик обеспечивает высокую точность измерения энергии в сетях со значительными отклонениями тока и напряжения.
При подаче сетевого напряжения и помещениях нагрузки, световой индуктор режима работы счетчика должен менять показания пропорционально величине потребляемой электрической энергии.
В курсовом проекте предполагается коммерческий учет активной энергии. Счетчик ПСЧ-4 устанавливают на линии отходящих от трансформаторной подстанции напряжением 0,38 кВ и питающей отдельные участки цеха.
2.11 Расчет защитного заземления
Защитное заземление - заземление частей электроустановки с целью обеспечения электробезопасности.
Зона растекания - область земли, в пределах (зоны растекания) который возникает заметный градиент потенциала при стекание тока с заземлителя.
Изолированный нейтраль - нейтраль, трансформатора или гениратора, не присоединенная к заземлению устройству или присоединенная к нему через приборы сигнализации и других устройства, имеющие большое сопротивление.
Искусственное заземление - заземлитель, специально выполненный для цепей заземления.
Магистральная заземления или зануления - заземляющей или зануляющий нулевой защитный проводник с двумя ответвлениями или более.
Нулевой защитный провод
в электроустановках до 1000 В - проводник,
соединяющий или
Нулевой рабочий проводник в электроустановках до 1000 В проводник, использующий для питания электроприемников или глухозаземленными выводами источников однофазного или постоянного тока. В указанных электроустановках нулевой рабочий провод может выполнять функции нулевого защитного проводника.
Рабочее заземление сети - соединение с землей некоторых точек сети со следующей целью: снижение уровня изоляции элементов электроустановки, эффективная защита сети разрядниками от атмосферных перенапряжений, снижение коммутационных перенапряжений, упрощение релейной защиты от однофазных коротких замыканий, возможность удержания поврежденной линии в работе.
В качестве искусственных заземлителей применяют вертикально забитые в землю отрезки угловой стали длиной 2,5-3 м и горизонтально проложенные круглые и прямоугольные стальные полосы, которые служат для связи вертикальных заземлителей. Использование стальных труб не рекомендуется.
В качестве естественных заземлителей используют: проложенные в земле стальные водопроводные трубы, соединенные в стыках газо- или электросваркой; трубы артезианских скважин, стальная броня силовых кабелей, проложенных в земле, при числе их не менее двух; металлические конструкции и фундаменты зданий и сооружений, имеющие надежное соединение с землей; различного рода трубопроводы, проложенные под землей; свинцовые оболочки кабелей, проложенных в земле.
Рабочее заземление осуществляется
непосредственно или через
Электроустановки переменного тока напряжением до 1000 В. допускаются к применению как с глухозаземленной, так и с изолированной нейтралью, а - тока - с глухозаземленной или изолированной средней точкой. В четырехпроводных сетях трехфазного тока и трехпроводных сетях - тока обязательное глухое заземление нейтрали или средней точки.
В электрических установках напряжением до 1000 В, с изолированной от земли нейтралью, используемой для заземления электрического оборудования, сопротивление заземляющего устройства не должно быть более 4 Ома.
В электрических установках
напряжением до 1000 В. с глухозаземленной
нейтралью сопротивление
Отклонение электрических установок при однофазных замыканиях на землю может осуществляться при помощи защитного отключения, которое выполняется в дополнение к заземлению или занулению.
Если невозможно выполнить заземление, или зануление, и обеспечить защитное отключение электрической установки, то допускается обслуживание электрического оборудования с изолирующих площадок. При этом должна быть исключена возможность одновременного прикосновения к незаземленным частям электрического оборудования и частям зданий или оборудованию имеющем соединение с землей.
В электроустановках напряжением выше 1000 В с изолированной нейтралью с малыми токами замыкания на землю сопротивления должно удовлетворять условию:
(2,51)
где - Uз=250 В, если заземляющее устройство используется только для установок напряжения выше 1000 В
Uз=125 В, если заземляющее устройство одновременно используется и для установок до 1000 В.
Iз - расчетный так замыкания на землю, А.
Емкостной ток замыкания на землю определяется по формуле:
(2,52)
где U - линейное напряжение сети, кВ
lкаб и lв - суммарная длина электрически связанных между соьой кабельных и воздушных линий, км.
В данном курсовом проекте внешний контур защитного заземления выполнен электродами, в количестве 13 штук. Электроды соединены между собой в общий контур полосовой стальной шиной по периметру на сварке. Соединение внешним контура с внутренним контуром выполняется полосовой сталью на сварке, выход полосы через стену в асбестоцементной трубе. Защищение электрических приемников выполняется гибким проводником на сваке.
1. Выбираем прутковые электроды;
2. Рассчитываем удельное сопротивление грунта :
(2,53)
Выбираем грунт - глина. [1, с. 257, табл 7,1]
[1, с. 260, табл 7,3]
3. (2,54)
4. Определяем ток однофазного замыкания на землю:
5. Определяем сопротивление заземляющего устройства.
(2,55)
.
Так как по ПОЭ для сетей 0,4 кВ Rз=4 Ом, то Rз=83,33 Ом не рассматриваем и принимаем Rз=4 Ом.
6. Определяем количество электродов n:
,(2,56)
где - коэффициент экранирования. [1, с. 257, табл 7,2]
.
ЗАКЛЮЧЕНИЕ
Курсовой проект выполнен на тему «Электроснабжение комплекса томатного сока».
В процессе выполнения проекта производился расчет электрических нагрузок комплекса томатного сока, с полученной при расчёте полной максимальной мощности Sмах= 80,51 кВА, и с компенсацией реактивной мощности Qмах= 8,57 кВАр КЭ1-0,38-20-2У1 ЗУ1 на основании которого выбран силовой трансформатор ТСЗ 160/10.
Также произведен расчёт токов короткого замыкания, с учётом которого выбрано высоковольтное электрооборудование. По расчётам на высокой стороне выбраны шины 25х3 мм, разъединитель РВЗ-10/400 IУЗ, высоковольтный предохранитель ПКТ-101-10-31,5-УЗ, трансформатор тока типа ТПЛК-10 и, трансформатор напряжения TV НОМ-10-66-У2, на низкой стороне выбран автоматический выключатель серии ВА51-33. По потребляемым токам произведён расчёт питающей линии, распределительные шинопроводы ШРА73-У3 , магистральные шинопроводы ШМА-1600, и распределительные пункты 0,4 кВт. На низкой стороне установлен распределительный пункты типа ПР-85, к которому выбран автоматический выключатель типа ВА51-31, прокладываемые к распределительным пунктам кабеля марки ААБ 25 мм2. К электроприёмникам выбраны автоматы серии ВА51-31, и подводимые к электроприёмникам провода АПРН 10х3+1х6. Также в схеме на низкой стороне показан способ включения компенсирующего устройства к шинам 0,4 кВт.
В курсовом проекте
рассмотрены также вопросы
Благодаря этому курсовому проекту я научился использовать технологическую литературу; рассчитывать и выбрать по ней необходимые электрооборудования.
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
1. Липкин Б.Ю. Электроснабжение
промышленных предприятий и
2. Неклепаев Б.Н.
Электрическая часть
3. Шеховцов В.П Расчет
и проектирование схем
4.Коновалова Л.Л., Рожкова Л.Д. Электроснабжение промышленных предприятий и установок - М.: Энергоатомиздат, 1989.
5. Конюхова Е.А. Электроснабжение объектов - М.: Издательство «Мастерство»; Высшая школа, 2001.
6. Федоров А.А., Старкова
Л.Е. Учебное пособие для
7. Дорошев К.И., Комплектные
распределительные устройства 6-35 кВ.-М.:
Энергоиздат, 1982.
Информация о работе Электроснабжение комплекса томатного сока