Автор работы: Пользователь скрыл имя, 17 Декабря 2010 в 09:50, дипломная работа
Вариант реализации газового конденсата для переработки на одном из НПЗ возможен, однако оплата конденсата будет строиться по принципу: цена нефти + небольшая премия. Такой принцип оплаты строится из того, что мощности НПЗ рассчитаны, прежде всего, на прием нефти, а не конденсата. Нефтепереработчики не рискуют модернизировать свои мощности под конденсат, поскольку риск постоянной загрузки будет по-прежнему достаточно высок. Как следствие, переработка газового конденсата на мощностях НПЗ даст выход продукции не намного выше, чем при загрузке НПЗ нефтью.
Задание для ВКР………………………………………………………….…….2
1.Технико-экономическое обоснование ……………………….……...… 4
2.Основные теоретические положения ……………………………...…....5
1.Методы расчета констант фазового равновесия …………….…5
2.1.1. Расчет фазового равновесия по методу В.И. Шилова ………..5
2.1.2. Расчет констант фазового равновесия по уравнению состояния Пенга- Робинсона…………………………………………………………6
2.1.3. Расчёт констант фазового равновесия по уравнению Тека-Стила………………………………………………………………………7
2.2.переработка газового конденсата…………………………………..7
3. Литературный обзор………………………………………………………9
3.1. Совершенствование технологии и оборудования подготовки газа………………………………………………………………………….…….9
3.2. Перспективные технологии глубокой промысловой переработки природного газа…………………………………………………………………14
3.3. Повышение эффективности переработки газового сырья……….20
3.4. Сверхзвуковая сепарация в технологии переработки газового углеводородного сырья…………………………………………………………24
4. Экспериментальная часть………………………………………………….32
4.1. Описание технологического процесса и схемы установки УКПГ..32
4.2. Моделирование процессов промысловой подготовки газа ……...37
4.3. Результаты проведения расчетов……………………………………38
5. Приложении 1………………………………………………………………..43
Для сравнения в табл.2 приведены результаты очистки газа изоэнтропийным способом (Δαs) и дросселированием (ΔαD):
Δαs = α1-α2S ; ΔαD = α1-α2D
где α2S и α2D — расчетные значения суммарной концентрации компонентов 3-9 для изоэнтропийного процесса, соответствующего расширению газа в идеальном турбодетандере, и для процесса дросселирования соответственно.
Разность концентраций целевых компонентов
до и после очистки (Δα) по «3S»-технологии
близка к значениям для изоэнтропийного
процесса, в то время как для процесса
дросселирования — значительно выше.
Рисунок 4. Схема экспериментального стенда.
1 - рабочий газ; 2 — теплообменник; 3 — жидкие компоненты;
4,9,10,14 — трубопроводы; 5 — смеситель;
б — входной отсек; 7 — сепарационный отсек;
8 — разделительный отсек; 11 — шнековый сепаратор;
12 — емкость для жидкости; 13 — уровнемер;
15 — трубы Вентури; 16 —дроссельные шайбы;
17 —расходомерные сопла; 18 — подача смеси на сжигание;
19 — турбинный расходомер; 20 — клапаны;
21 —-
емкость с целевыми
23 —
трубопровод для выхода
Приборы: П1, П2 — пробоотборники; Т1-Т6 — термопары; Р1-Р10 — датчики давлений;
API, АР2 — датчики перепада давлений для труб Вентури
В сравнении с традиционными технологиями (JT-клапан — дроссель) установки «3S» при любых условиях работы превосходят по эффективности: выделение тяжелых углеводородов увеличивается не менее чем на 30% (притом же перепаде давления), а экономия компрессорных мощностей при решении задач подготовки газа к транспортировке достигает 50-70%, вследствие чего уменьшаются эксплуатационные издержки. Они эффективно работают и в таких условиях, когда JT-клапан неприменим.
На рис.
3 представлен график сравнительной эффективности
«3S»-установки и JT-клапана при сепарации
газового потока для одной из серий испытаний
в дозвуковом режиме.
Рисунок 5. Степень извлечения тяжелых углеводородов по «3S» (эксперимент) и JT (расчет) – технологиям, %.
Каждой точке на этом графике соответствует результат испытания «3S»-установки. При этом соответствующее значение по вертикальной оси означает степень извлечения тяжелых углеводородов, достигнутую в этом эксперименте, а по горизонтальной оси — расчетную степень извлечения для JT-клапана притом же перепаде давления.
Уже сейчас (на ранней стадии развития технологии) схемы НТК с использованием «3S»-сепаратора превосходят по эффективности схемы с использованием турбодетандеров (изоэнтропийный процесс) в случае низкого и умеренного расхода газа и для достаточно богатых по содержанию соответствующих компонентов газов. На рис. 4 представлен сравнительный анализ использования двух таких схем с одинаковыми входными и выходными параметрами.
«3S»-Сепараторы можно эффективно использовать во многих ситуациях, когда турбодетандеры неприменимы по техническим (например, высокое входное давление) или экономическим (выделение пропан-бутанов на месторождениях малого и среднего объема) соображениям.
№ | Компонеты | Концентрация, % об. | |||||||||
Пуск 1 | Пуск 2 | Пуск 3 | Пуск 4 | Пуск 5 | |||||||
Т. 1 | Т. 2 | Т. 1 | Т. 2 | Т. 1 | Т. 2 | Т. 1 | Т. 2 | Т. 1 | Т. 2 | ||
1 | Метан | 92,26 | 95,71 | 94,86 | 96,3 | 93,48 | 95,1 | 94,63 | 96,29 | 95,18 | 96,05 |
2 | Этан+этилен | 0,87 | 0,84 | 0,85 | 0,83 | 0,96 | 0,93 | 0,94 | 0,91 | 0,92 | 0,89 |
3 | Пропан+пропилен | 3,07 | 1,62 | 1,62 | 1,16 | 1,73 | 1,31 | 1,27 | 1,12 | 1,25 | 0,98 |
4 | изо-Бутан | 0,5 | 0,18 | 0,34 | 0,16 | 0,58 | 0,34 | 0,36 | 0,16 | 0,26 | 0,13 |
5 | н-Бутан | 1,05 | 0,31 | 0,73 | 0,3 | 1,02 | 0,52 | 0,68 | 0,3 | 0,57 | 0,27 |
6 | н-Бутанен | 0,02 | 0,01 | 0,01 | 0,004 | <0,005 | <0,003 | <0,005 | <0,003 | <0,005 | <0,005 |
7 | изо-Бутен | 0,01 | <0,003 | 0,005 | <0,003 | <0,005 | <0,003 | <0,005 | <0,003 | <0,005 | <0,005 |
8 | цис-Бутен | 0,04 | 0,01 | 0,03 | 0,01 | 0,02 | 0,01 | 0,02 | 0,01 | 0,02 | <0,005 |
9 | Метил-бутен+транс-бутен | <0,003 | 0,02 | <0,003 | 0,03 | 0,01 | 0,03 | <0,005 | 0,02 | <0,005 | |
10 | Кислород+аргон | 1,19 | 0,43 | 0,75 | 0,37 | 0,33 | 0,76 | 0,88 | 0,36 | 0,61 | 0,44 |
11 | Азот | 0,92 | 0,84 | 0,74 | 0,82 | 0,8 | 0,97 | 1,2 | 0,8 | 1,12 | 1,18 |
12 | Диоксид углерода (СО2) | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 | 0,05 |
Таблица 6. Компонентный состав газа до и после сепарационной отчистки.
В настоящее время созданы и испытаны установки, способные эффективно извлекать углеводороды С5+ и С3+. Ведутся испытания «3S»-установки, предназначенной для осушки природного газа от паров воды. Проводятся интенсивные экспериментальные исследования по дальнейшему повышению эффективности «3S»-установок для выделения С3+ и созданию установки для выделения этана.
На основе предлагаемой технологии в сочетании с традиционным оборудованием (теплообменники, газожидкостные сепараторы, холодильники, дистилляционные и ректификационные колонны и т.д.) созданы высокоэффективные схемы низкотемпературной конденсации, которые можно использовать на промыслах и газоперерабатывающих заводах, в том числе при переработке газа на морских платформах.
«3S»-Технологии имеют некоторые преимущества по сравнению с традиционными методами очистки природного газа:
Достигнутые
результаты позволяют говорить о том,
что технологии с использованием «3S»-сепараторов
превзойдут эффективность соответствующих
комплексов, основанных на турбодетандерах,
в широком диапазоне возможных применений,
в том числе при выделении этановой фракции.
4.1. Описание технологического процесса и схемы установки УКПГ.
Продукция скважин с узла входа шлейфов поступает на первую ступень сепарации в вертикальный сепаратор С-1 через электроприводной кран ЭКП-6 и регулирующий клапан давления КР-1, который поддерживает давление «после себя». Регулирующий клапан КР-1 прямого действия обеспечивает стабильное давление на входе в сепаратор первой ступени С-1 модуля подготовки газа.
Для предотвращения гидратообразования перед КР-1 постоянно подается метанол через обратный клапан ОК10 и В25 из блока дозирования ингибитора БДИ-2/2 или метанол с концентрацией до 40% от дозировочного насоса Н-2/1,2. Давление в метанолопроводе замеряется техническим манометром по месту.
В сепараторе первой ступени С-1, под действием сил гравитации происходит предварительное отделение из газового потока капельной жидкости и мехпримесей.
Отсепарированная жидкая фаза (газовый конденсат, метанольная вода) и мехпримеси по уровню поз.23 через клапан регулятор уровня Клр-1 и клапан запорный Клз-1 отводится в разделитель жидкости РЖ-1.
Частично отсепарированный газовый поток по трубопроводу с давлением из сепаратора С-1 подается в трубное пространство двухсекционного теплообменника «Газ-Газ» Т-1, где охлаждается обратным холодным потоком осушенного газа, проходящего по межтрубному пространству теплообменника Т-1.
На газопроводе между С-1 и Т-1 установлены два отсекающих крана К-45 и К-46 с контрольным вентилем В38 и три крана К47, К48 и К49 с заглушками для подключения в перспективе аппаратов воздушного охлаждения и дожимной компрессорной станции. Все краны с ручным управлением.
Перед кранами К45 и К46 и перед теплообменником Т-1, для предотвращения гидратообразования в аппаратах воздушного охлаждения и в трубном пространстве Т-1, предусмотрена подача метанола по метанолопроводу через обратные клапаны ОК13, ОК14 и вентили В36,В37.
Подача метанола осуществляется от БДИ-2/2. Продувка форсунок для впрыскивания метанола ведется обратным потоком газа при закрытом вентиле В36, В37 и открытом вентиле В103, В104 на трубопроводе сброса продуктов продувки в продувочный трубопровод технологического модуля.
Охлажденный в теплообменнике Т-1 прямой поток газа по трубопроводу поступает через регулирующий клапан давления КР-2 в сепаратор второй ступени С-2.
Регулирующий
клапан прямого действия КР-2 обеспечивает
стабильное давление газа на входе
в блок сепаратора С-2 модуля подготовки
газа. Давление до КР-2 и после него
замеряется электроконтактными манометрами
ЭКМ с выводом
После клапана КР-2 газовый поток по трубопроводу поступает в сепаратор С-2.
Для
предотвращения превышения давления на
входе в сепаратор С-2 установлены
сдвоенные предохранительные
В сепараторе С-2 происходит отделение капельной жидкости, которая сконденсировалась в результате снижения температуры в теплообменнике Т-1 и снижения давления после клапана КР-2.
Освобожденный от капельной жидкости основной газовый поток из С-2 поступает в трубное пространство теплообменника "Газ-Газ" Т-2, где охлаждается обратным холодным потоком осушенного газа, проходящего по межтрубному пространству теплообменника Т-2.
Перед теплообменником Т-2 предусмотрена подача метанола по метанолопроводу через обратные клапаны ОК14 и вентиль В59 для предотвращения гидратообразований в теплообменнике Т-2.
Охлажденный в теплообменнике Т-2 прямой поток газа по трубопроводу Ду300 через кран К56 направляется на регулирующий клапан давления КР-3, на котором дросселируется и охлаждается за счет дроссельэффекта.
После клапана КР-3 газовый поток при температуре направляется в сепаратор С-3.
Часть потока газа, из сепаратора С-2 в качестве активного газа подается на два эжектора ЭЖ-1, ЭЖ-2 для утилизации низконапорного газа стабилизации и газа выветривания от установки деэтанизации и стабилизации УДСК и газа выветривания из разделителя жидкости РЖ-2.
На вход низкотемпературного сепаратора С-3 поступают газы дегазации конденсата из РЖ-1 через задвижку Зд28, а также впрыскивается часть «тяжелого» газового конденсата из РЖ-1 в межтрубном пространстве теплообменника ТР-1 газовым конденсатом из сепаратора С-3.
Расход «тяжелого» газового конденсата поступающего на впрыск, регулируется клапаном регулятором расхода Клр-9, установленного на входе в межтрубное пространство теплообменника ТР-1
Подача «тяжелого» газового конденсата перед С-3 производится через форсунки, с целью более полного извлечения углеводородов С5+высшие из газожидкостного потока.
Для
предотвращения превышения давления на
входе в сепаратор С-3 установлены
сдвоенные предохранительные