Автор работы: Пользователь скрыл имя, 09 Апреля 2013 в 16:42, контрольная работа
Сам по себе курс статистики имеет целью дать студенту представление о содержании статистики как научной дисциплины, познакомить с её основными понятиями, методологией и методиками расчета важнейших статистических аналитических показателей. Для современного студента это актуально, т.к. расширенными конкретными дисциплинами на базе статистики являются теория статистического наблюдения, анализ и прогнозирование временных рядов, классификации и группировки, многомерные статистические методы, экономическая и отраслевые статистики, анализ хозяйственной и финансовой деятельности и другие.
1.Введение………………………………………………………………....3
2. Понятие и виды ряда динамики……………………………………….4
3. Выявление и характеристика основной тенденции развития……...6
4. Сопоставимость уровней и смыкание рядов динамики…………….10
5. Аналитические показатели ряда динамики………………………….13
6. Средние показатели рядов динамики………………………………...16
7. Методы сглаживания и выравнивания динамических рядов………19
8. Заключение…………………………………………………………….26
9.Список использованной литературы…………………………………27
План
1.Введение……………………………………………………
2. Понятие и виды ряда динамики……………………………………….4
3. Выявление и характеристика основной тенденции развития……...6
4. Сопоставимость уровней
и смыкание рядов динамики……………
5. Аналитические показатели ряда динамики………………………….13
6. Средние показатели
рядов динамики………………………………...
7. Методы сглаживания и выравнивания динамических рядов………19
8. Заключение……………………………………………………
9.Список использованной литературы…………………………………27
1.Введение
Сам по себе курс статистики
имеет целью дать студенту представление
о содержании статистики как научной
дисциплины, познакомить с её основными
понятиями, методологией и методиками
расчета важнейших
Слово «статистика» имеет
латинское происхождение, и изначально
определялось как состояние государства.
С развитием статистической науки
и расширением сферы
Под статистикой понимают отрасль практической деятельности, цель которой сбор, обработку, анализ и публикацию массовых данных (в этом смысле «статистика» выступает как синоним словосочетания «статистический учет»);
Процесс развития социально-экономических явлений во времени в статистике принято называть динамикой. Для отображения динамики строят ряды динамики, которые представляют собой ряды изменяющихся во времени значений статистического показателя, расположенных в хронологическом порядке. В динамическом ряду процесс экономического развития изображается в виде совокупности перерывов непрерывного, позволяющих детально проанализировать особенности развития при помощи характеристик, которые отражают изменение параметров экономической системы во времени. классификация ряд динамика
Ряд динамики, хронологический ряд, динамический ряд, временной ряд – это последовательность упорядоченных во времени числовых показателей, характеризующих уровень развития изучаемого явления. Всякий ряд динамики включает два обязательных элемента: во-первых, время и, во-вторых, конкретное значение показателя, или уровень ряда.
2. Понятие и виды ряда динамики.
Выявление и отображение процесса
развития и изменения социально-
Ряд динамики состоит из двух элементов: показателей уровня ряда и показателей времени (годы, кварталы, месяцы, сутки) или моментов времени.
Уровни ряда обычно обозначаются через «y», моменты или периоды времени, к которым они относятся - через «t».
Ряды динамики, как правило, представляют в виде таблицы или графически.
Ряды динамики могут быть классифицированы по следующим признакам:
Ряды динамики абсолютных
величин более полно
Ряды относительных
величин могут характеризовать
во времени темпы роста (или снижения)
определенного показателя; изменение
удельного веса того или иного
показателя в совокупности; изменение
показателей интенсивности отде
Ряды динамики средних величин служат для характеристики изменения уровня явления, отнесенного к единице совокупности, например: данные о среднегодовой численности занятых в экономике; о средней урожайности отдельных сельскохозяйственных культур, о средней заработной плате в отдельных отраслях и т.д.
Уровни моментных рядов динамики характеризуют явления по состоянию на определенный момент времени.
Уровни моментного ряда динамики абсолютных величин не меняется с изменением временного промежутка, т.е. их нельзя суммировать в классическом смысле этого слова.
Уровни интервальных рядов динамики характеризуют явления за определенный промежуток, интервал времени.
Если уровни интервального ряда представляют собой абсолютные величины, то их можно суммировать во времени, т.е. переходить от ряда динамики с малыми временными интервалами к более крупным промежуткам времени. Суммируя уровни интервальных рядов из абсолютных величин, можно строить ряды динамики с нарастающими итогами.
3. · Выявление и характеристика основной тенденции развития.
Одной из задач, возникающих при анализе рядов динамики, является установление закономерности изменения уровней изучаемого показателя во времени. Для этого необходимо выделить такие периоды (этапы) развития, которые достаточно однородны в отношении взаимосвязи данного явления с другими и условий его развития.
Выделение этапов развития – это задача, находящаяся на стыке науки, изучающей данное явление (экономики, социологии и т. п.), и статистики. Решение этой задачи осуществляется не только и даже не столько с помощью статистических методов (хотя и они могут принести определенную пользу), сколько на базе содержательного анализа сущности, природы явления и общих законов его развития.
Для каждого этапа развития нужно выявить и численно охарактеризовать основную тенденцию изменения уровня явления. Под тенденцией понимается общее направление к росту, снижению или стабилизации уровня явления с течением времени. Если уровень непрерывно растет или непрерывно снижается, то тенденция к росту или снижению наблюдается отчетливо: она легко обнаруживается визуально по графику временного ряда. Следует, однако, иметь в виду, что и рост, и снижение уровня могут происходить по-разному: либо равномерно, либо ускоренно, либо замедленно. Под равномерным ростом (или снижением) понимается рост (или снижение) с постоянной абсолютной скоростью, когда цепные абсолютные приросты (i) одинаковы. При ускоренном росте или снижении цепные приросты систематически увеличиваются по абсолютной величине, а при замедленном росте или снижении – уменьшаются (тоже по модулю). Практически уровни ряда динамики очень редко растут (или снижаются) строго равномерно. Нечасто встречается и систематическое, без единого отклонения, увеличение или снижение цепных приростов.
Такие отклонения объясняются либо изменением с течением времени всего комплекса основных причин и факторов, от которых зависит уровень явления, либо изменением направления и силы действия второстепенных, в том числе случайных, обстоятельств и факторов, поэтому при анализе динамики идет речь не просто о тенденции развития, а об основной тенденции, достаточно стабильной (устойчивой) на протяжении данного этапа развития. В некоторых случаях эта закономерность, общая тенденция развития объекта вполне четко отображаются уровнями динамического ряда.
Основной тенденцией (трендом) называется достаточно плавное и устойчивое изменение уровня явления во времени, более или менее свободное от случайных колебаний. Основную тенденцию можно представить либо аналитически – в виде уравнения (модели) тренда, либо графически. Выявление основной тенденции развития (тренда) называется в статистике также выравниваем временного ряда, а методы выявления основной тенденции – методами выравнивания.
Одними из самых распространенных способов выявления основных тенденций (тренда) ряда динамики являются методы:
· укрупнения интервалов;
· скользящей средней (суть метода состоит в замене абсолютных данных средними арифметическими за определенные периоды). Расчет средних ведется способом скольжения, т. е. постепенным исключением из принятого периода первого уровня и включение следующего;
· аналитического выравнивания. При этом уровни ряда динамики выражаются в виде функций времени:
1) f (t) = a0 + a1t – линейная зависимость;
2) f (t) = a0 + a1t + a2t2– параболическая зависимость. Способ укрупнения интервалов и их характеристики средними уровнями заключается в переходе от интервалов менее продолжительных к более продолжительным, например от суток – к неделям или декадам, от декад – к месяцам, от месяцев – к кварталам или годам, от годовых интервалов – к многолетним. Если уровни ряда динамики колеблются с более или менее определенной периодичностью (волнообразно), то укрупненный интервал целесообразно взять равным периоду колебаний (длине «волны» цикла). Если же такая периодичность отсутствует, то укрупнение производят постепенно от малых интервалов к все более крупным, пока общее направление тренда не станет достаточно отчетливым.
Если ряд динамики является моментным, а также в тех случаях, когда уровень ряда является относительной или средней величиной, суммирование уровней не имеет смысла, и следует охарактеризовать укрупненные периоды средними уровнями.
При укрупнении интервалов число членов динамического ряда сильно сокращается, в результате чего движение уровня внутри укрупненного интервала выпадает из поля зрения. В связи с этим для выявления основной тенденции и более детальной ее характеристики используется сглаживание ряда с помощью скользящей средней.
Сглаживание ряда динамики с помощью скользящей средней заключается в том, что вычисляется средний уровень из определенного числа первых по порядку уровней ряда, затем – средний уровень из такого же числа уровней, начиная со второго, далее, начиная с третьего и т. д. Таким образом, при расчетах среднего уровня как бы «скользят» по временному ряду от его начала к концу, каждый раз отбрасывая один уровень в начале и добавляя один следующий. Отсюда название – скользящая средняя.
Каждое звено скользящей средней – это средний уровень за соответствующий период. При графическом изображении и при некоторых расчетах каждое звено принято условно относить к центральному интервалу того периода, за который сделан расчет (для моментального ряда – к центральной дате).
Вопрос о том, за какой период следует вычислять звенья скользящей средней, решается в зависимости от конкретных особенностей динамики. Как и при укрупнении интервалов, если в колебаниях уровня есть определенная периодичность, то период сглаживания целесообразно принять равным периоду колебаний или кратной его величине. Так, при наличии квартальных уровней, испытывающих ежегодно сезонные спады и повышения, целесообразно применять четырех– или восьмиквартальную среднюю и т. п. Если же колебания уровней являются беспорядочными, то целесообразно постепенно укрупнять интервал сглаживания, пока не выявится отчетливая картина тренда.
Аналитическое выравнивание ряда динамики позволяет получить аналитическую модель тренда. Оно производится следующим образом.
· На основе содержательного анализа выделяется этап развития и устанавливается характер динамики на этом этапе.
· Исходя из предположения о той или иной закономерности роста и из характера динамики выбирается форма аналитического выражения тренда, вид аппроксимирующей функции, которой графически соответствует определенная линия: прямая, парабола, показательная кривая и т. п. Эта линия (функция) выражает предполагаемую закономерность плавного изменения уровня во времени, т. е. основную тенденцию. При этом каждый уровень ряда динамики условно рассматривается как сумма двух составляющих (компонент): yt=f(t)+?t. Одна из них (yt = f (t)), выражающая тренд, характеризует влияние постоянно действующих, основных факторов и называется систематический регулярной компонентой. Другая составляющая (8t) отражает влияние случайных факторов и обстоятельств и называется случайной компонентой. Эту компоненту называют также остаточной (или просто остатком), так как она равна отклонению фактического уровня от тренда. Таким образом, допускается (условно предполагается), что основная тенденция (тренд) формируется под влиянием постоянно действующих главных факторов, а второстепенные, случайные факторы вызывают отклонение уровня от тренда.