Автор работы: Пользователь скрыл имя, 10 Сентября 2011 в 10:50, контрольная работа
Задание:
Необходимо сгруппировать территории с уровнем фондовооруженности «до 240 тыс. руб. и более». В каждой группе рассчитать:
- число территорий;
- долю занятых;
- фондовооружённость.
Оформить в виде таблицы с соблюдением правил. Проанализировать полученные результаты:
3 вариант
Задача №1
Приводятся данные по территориям Центрального округа за 2002 год.
Задание:
Необходимо сгруппировать территории с уровнем фондовооруженности «до 240 тыс. руб. и более». В каждой группе рассчитать:
- число территорий;
- долю занятых;
- фондовооружённость.
Оформить в виде таблицы с соблюдением правил. Проанализировать полученные результаты:
№ п/п | район | Численность населения на 01.01.00 г., млн. чел. | Среднегодовая
численность занятых в экономике
Всего, млн. чел. |
Валовой региональный
продукт, млрд. руб.
в % к численности населения |
Основные фонды в экономике, млрд. руб. | Приходится в среднем стоимости фондов на 1-го занятого в экономике, тыс. руб. | Итого: |
фондовооруженность менее 240 тыс. руб. | |||||||
1 | Орловская | 0,9 | 0,37 | 41,7 | 10,2 | 54,5 | 145,7 |
2 | Ивановская | 1,2 | 0,48 | 39,3 | 9,1 | 74,2 | 154,9 |
3 | Владимирская | 1,6 | 0.70 | 43,6 | 16 | 115,2 | 164,8 |
4 | Тульская | 1,7 | 0,77 | 44 | 19,1 | 150,3 | 196,5 |
5 | Калужская | 1,1 | 0,47 | 43,8 | 10,9 | 94,9 | 200,6 |
6 | Рязанская | 1,3 | 0,52 | 40,5 | 14,2 | 107,3 | 206,3 |
7 | Московская | 6,4 | 2,33 | 36,1 | 100,6 | 489,3 | 209,9 |
8 | Брянская | 1,4 | 0,55 | 38 | 11,9 | 119,6 | 218,9 |
Итого | 15,6 | 6,19 | * | 192 | 1205,3 | * | |
фондовооруженность более 240 тыс. руб. | |||||||
1 | Москва | 8,5 | 5,05 | 59,2 | 362,5 | 1222,8 | 242,1 |
2 | Костромская | 0,8 | 0,33 | 41,6 | 8,9 | 79,1 | 243,4 |
3 | Смоленская | 1,1 | 0,45 | 39,6 | 12,2 | 112,6 | 251,9 |
4 | Тверская | 1,6 | 0,63 | 39,6 | 17,7 | 162,7 | 257,8 |
5 | Ярославская | 1,4 | 0,64 | 45 | 22,3 | 167,8 | 264,3 |
Итого | 13,4 | 7,1 | * | 423,6 | 1745 | * |
В каждой группе рассчитать: - число территорий.
В первой группе с фондоовооруженностью менее 240 тыс. руб. число территорий - 8.
Во второй группе с фондоовооруженностью 240 тыс. руб. и более - 5 территорий.
Доля занятых. В группе с фондоовооруженностью менее 240 тыс. руб.
Доля занятых = Сумма среднегодовой численности занятых в экономике / Сумму численности населения по 8-ми территориям*100%.
Имеем:
6,19/15,6*100%=39,7% чел. - доля занятых в первой группе.
7,10/13,4*100%=53,0% чел. - доля занятых во второй группе
Фондовооруженность
- показатель, характеризующий оснащенность
работников основными фондами. Фондовооруженность
исчисляется путем деления
Фондовооруженность
= сумма основных фондов в экономике
в тыс. руб./ сумма среднегодовой
численности занятых в
Имеем:
1205300000000/6190000=194,7 тыс. руб. - фондовооруженность в первой группе. 1745000000000/7100000=245,8 тыс. руб. - фондовооруженность во второй группе
Вывод:
В группе с фондоовооруженностью
выше 240 тыс. руб. одновременно
обнаруживается большая
доля занятых человек
в общей численности
населения
Задача№2
Приводятся сведения по регионам Европейской части России
Задание:
Выполните расчёт
средних значений каждого показателя,
укажите вид и форму
Регионы | Численность занятых в экономике | Среднемесячный душевой доход населения, руб. | Стоимость валового регионального продукта в среднем на | ||
Всего, млн. чел. | В% от численности населения | 1-го занятого в экономике, тыс. руб. | 1 руб. стоимости основных фондов в экономике, коп. | ||
Волго-Вятский | 3,59 | 43,2 | 860 | 27,2 | 14,5 |
Центрально-Чернозёмный | 3,15 | 40,5 | 1059 | 27,9 | 12,5 |
Средняя численность занятых в экономике всего - простая, арифметическая.
(3,59 + 3,15) / 2 = 3,37
Средний % от численности населения - взвешенная, геометрическая
(3,59 + 3,15) / (3,59/43,2/100 + 3,15/40,5/100) = 6,74 / (8,31 + 7,77) = 6,74 / 16,08 = 0,419
0,419 или 41,9%
Среднемесячный душевой доход - взвешенная, арифметическая
(860 * 3,59 + 1059 * 3,15) / (3,15 + 3,59) = (3087,4 + 3335,85) / 6,74 = 6423,25 / 6,74 = 953
Средняя стоимость валового регионального продукта на 1 занятого - взвешенная, арифметическая
(27,5*3,59 + 27,9*3,15) / (3,15 + 3,59) = (98,7 + 87,9) / 6,74 = 186,6 / 6,74 = 27,7
Средняя стоимость валового регионального продукта на 1 руб. основных фондов - взвешенная, геометрическая
для расчета нужны данные из предыдущего пункта (которые подчеркнуты), это - валовый региональный продукт в миллиардах рублей.
(98,7 + 87,9) / (98,7/14,5
+ 87,9/12,5) = 186,6 / (6,8 + 7,0) = 186,6 / 13,8 = 13,5
Задача 3
Приводятся данные за 2002 год о распределении территорий РФ по уровню среднемесячной начисленной заработной платы, тыс. руб.
Задание:
Выполните расчёт абсолютных и относительных показателей вариации, коэффициент асимметрии и показатель моды, постройте на одном графике гистограмму и полигон распределения частот, выполните анализ полученных результатов.
Группы территорий РФ по уровню среднемесячной начисленной заработной платы, тыс. руб. | Число территорий в каждой группе | Среднее значение з/пл. | Среднее значение зарплаты в каждой группе | Абсолютное отклонения от средней | Квадрат отклонения от средней | Куб отклонения | ||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
[f '] | [x'] | [х' * f '] | [x' – x-ср.] | [(x' – x-ср.)^2] | [(x' – x-ср.)^3] | [(x' – x-ср.)^2 * f ' | [(x' – x-ср.)^3 * f '] | |
От 0,51 до 0,82 | 4 | 0,665 | 2,66 | -0,565 | 0,3192 | -0,1804 | 1,2768 | -0,7216 |
От 0,82 до 1,13 | 28 | 0,975 | 27,30 | -0,255 | 0,0650 | -0,0166 | 1,82 | -0,4648 |
От 1,13 до 1,44 | 19 | 1,285 | 24,42 | +0,055 | 0,0030 | 0,0002 | 0,057 | 0,0038 |
От 1,44 до 1,74 | 11 | 1,59 | 17,49 | +0,360 | 0,1296 | 0,0466 | 1,4256 | 0,5126 |
От 1,74 до 2,05 | 7 | 1,895 | 13,27 | +0,665 | 0,4422 | 0,2941 | 3,0954 | 2,0587 |
Итого: | 69 | Х | 85,14 | Х | Х | Х | 7,6748 | 1,3887 |
Х ср = 1,23.
Дисперсия = 7,6748/69=0,111
Среднее квадратическое отклонение или СКО = 0,333
Ассиметрия – 0,5447
Для расчёта показателей вариации, предварительно требуется дополнить таблицу столбцами с результатами промежуточных расчетов (первые два столбца как в задании).
Среднее значение зарплаты в группе – середина интервала данной группы.
Среднее (оценка среднего, выборочное среднее) – сумма значений переменной, деленная на n (число значений переменной). Если вы имеете значения Х(1),…, X(N), то формула для выборочного среднего имеет вид:
`х =
Средняя арифметическая – одна из основных числовых характеристик вариационного ряда. (х)
– простая х = ∑ хi / n
– взвешенная х = ∑ хi fi / ∑ fi, где хi – отдельные значения признака;
fi – статистический вес
Статистический вес отражает то общее, что характерно для всех единиц совокупности. В задании рассчитывается средняя арифметическая взвешенная, где вес представлен абсолютными величинами. Сначала перейдем от интервального ряда к дискретному, используя при этом их среднее значение вместо интервальных: i ср. = (i min + i max) / 2
Для первого интервала: (0,82 + 0,51)/2 = 0,665; второго: (1,13 + 0,82)/2 = 0,975; третьего: (1,44 + 1,13) = 1,285; четвертого: (1,74 +1,44) = 1,59; пятого: (2,05 + 1,74)/2 = 1,895
Первый показатель, который рассчитывается – средняя. В данном случае мы рассчитываем взвешенную арифметическую среднюю, среднюю из значений з/п (столбец 3, который в свою очередь есть способ представления данных из столбца 1) взвешенных на количество регионов, попавших в данный интервал заработных плат (столбец 2).
В столбце 4 как раз и показаны произведения з/п на количество регионов: 0,665*4 = 2,66; 0,975*28 = 27,3; 1,285*19 = 24,415; 1,59*11 = 17,49; 1,875*7 = 13,265.
Сумма по этому столбцу поделенная на общее количество регионов – 69 – и будет средней: 85,14/69 = 1,23
Средняя арифметическая равна:
(((0,82 + 0,51)/2)*4+((1,13 + 0,82)/2 *28 + ((1,44 + 1,13)/2*19 + ((1,74 +1,44)/2*11 + ((2,05 + 1,74)/2*7)/69= 1,23
Х ср = 1,23.
Столбец 5 – промежуточный, из него будут браться значения для последующих расчетов.
Для расчета показателя «дисперсия» строится столбец 6 и столбец 8.
Выборочное среднее является той точкой, сумма отклонений наблюдений от которой равна 0. Формально это записывается следующим образом: (`х – х1) + (`х – х2) +… + (`х – хn) =0.
Для
оценки степени разброса (отклонения)
какого-то показателя от его среднего
значения, наряду с максимальным и
минимальным значениями, используются
понятия дисперсии и
Дисперсия выборки или выборочная дисперсия (от английского variance) – это мера изменчивости переменной. Термин впервые введен Фишером в 1918 году. Выборочная дисперсия вычисляется по формуле:
s2 =
где `х – выборочное среднее,
N – число наблюдений в выборке.
Дисперсия меняется от нуля до бесконечности. Крайнее значение 0 означает отсутствие изменчивости, когда значения переменной постоянны.
Стандартное отклонение, среднее квадратическое отклонение (от английского standard deviation) вычисляется как корень квадратный из дисперсии. Чем выше дисперсия или стандартное отклонение, тем сильнее разбросаны значения переменной относительно среднего.
Дисперсия показывает, как сильно фактические значения колеблются вокруг среднего значения. Дисперсия вычисляется как сумма квадратов отклонений фактических значений от средней, взвешенных на число регионов данной группы.
В столбце 6 строятся сами квадраты отклонений, а в столбце 8 – взвешенные квадраты отклонений. Делением суммы взвешенных квадратов отклонений на количество регионов получаем саму дисперсию: 7,6748/69=0,111.
Корень из дисперсии тоже является одним из абсолютных показателей вариации – среднее квадратическое отклонение или СКО = 0,333.
Для вычисления асимметрии используются столбец 7 и столбец 9. Асимметрия показывает насколько фактический ряд распределения смещен в сторону своих больших или малых значений относительно распределения по нормальному закону.
Ассиметрия – это свойство распределения выборки, которое характеризует несимметричность распределения СВ. На практике симметричные распределения встречаются редко и чтобы выявить и оценить степень асимметрии, вводят следующую меру: