Автор работы: Пользователь скрыл имя, 20 Октября 2011 в 21:06, реферат
Факторный анализ, раздел статистического анализа многомерного,. объединяющий методы оценки размерности множества наблюдаемых переменных посредством исследования структуры ковариационных или корреляционных матриц. Основное предположение Ф. а. заключается в том, что корреляционные связи между большим числом наблюдаемых переменных определяются существованием меньшего числа гипотетических ненаблюдаемых переменных или факторов. В терминах случайных величин – результатов наблюдений X1,..., Xn общей моделью Ф. а. служит следующая линейная модель:
Факторный анализ, раздел статистического анализа многомерного,. объединяющий методы оценки размерности множества наблюдаемых переменных посредством исследования структуры ковариационных или корреляционных матриц. Основное предположение Ф. а. заключается в том, что корреляционные связи между большим числом наблюдаемых переменных определяются существованием меньшего числа гипотетических ненаблюдаемых переменных или факторов. В терминах случайных величин – результатов наблюдений X1,..., Xn общей моделью Ф. а. служит следующая линейная модель:
(*),
,
где случайные величины fj суть общие факторы, случайные величины Ui суть факторы, специфические для величин Xiи не коррелированные с fj, а ei; суть случайные ошибки. Предполагается, что k < n задано, случайные величины eiнезависимы между собой и с величинами fj и Ui и имеют Еei = 0, Dei = s2i. Постоянные коэффициенты aij называются факторными нагрузками (нагрузка i-й переменной на j-й фактор). Значения aij, bi, и s2i считаются неизвестными параметрами, подлежащими оценке. В указанной форме модель Ф. а. отличается некоторой неопределённостью, т.к. nпеременных выражаются здесь через n + k других переменных. Однако уравнения (*) заключают в себе гипотезу о ковариационной матрице, которую можно проверить. Например, если факторы fj некоррелированы и cij – элементы матрицы ковариаций между величинами Xi, то из уравнений (*) следует выражение для cij через факторные нагрузки и дисперсии ошибок:
, .
Т. о., общая модель Ф. а. равносильна гипотезе о ковариационной матрице, а именно о том, что ковариационная матрица представляется в виде суммы матрицы А = {aij} и диагональной матрицы L с 2 элементами s2i.
Процедура оценивания в Ф. а. состоит из двух этапов: оценки факторной структуры – числа факторов, необходимого для объяснения корреляционной связи между величинами Xi, и факторной нагрузки, а затем оценки самих факторов по результатам наблюдения. Принципиальные трудности при интерпретации набора факторов состоят в том, что при k > 1 ни факторные нагрузки, ни сами факторы не определяются однозначно, т.к. в уравнении (*) факторы fj могут быть заменены любым ортогональным преобразованием. Это свойство модели используется в целях преобразования (вращения) факторов, которое выбирается так, чтобы наблюдаемые величины имели бы максимально возможные нагрузки на один фактор и минимальные нагрузки на остальные факторы. Существуют различные практические способы оценки факторных нагрузок, имеющие смысл в предположении, что Xi,..., Xn подчиняются многомерному нормальному распределению с ковариационной матрицей С = {сij}.Выделяется максимального правдоподобия метод, который приводит к единственным оценкам для cij, но для оценок aij даёт уравнения, которым удовлетворяет бесчисленное множество решений, одинаково хороших по статистическим свойствам.
Ф. а. возник и первоначально разрабатывался в задачах психологии (1904). Область его приложения значительно шире – Ф. а. находит применение при решении различных практических задач в медицине, экономике, химии и т.д. Однако многие результаты и методы Ф. а. пока ещё не обоснованы, хотя практики ими широко пользуются. Математическое строгое описание современного Ф. а. – задача весьма трудная и до сих пор в полной мере не решенная.
Факторный анализ позволяет решить две важные проблемы исследователя: описать объект измерения всесторонне и в то же время компактно. С помощью факторного анализа возможно выявление скрытых переменных факторов, отвечающих за наличие линейных статистических связей корреляций между наблюдаемыми переменными.
Например, анализируя
оценки, полученные по нескольким шкалам,
исследователь замечает, что они
сходны между собой и имеют
высокий коэффициент
Таким образом можно выделить 2 цели Факторного анализа:
Для выявления наиболее
значимых факторов и, как следствие,
факторной структуры, наиболее оправданно
применять метод главных
Факторный анализ может быть 1) разведочным — он осуществляется при исследовании скрытой факторной структуры без предположения о числе факторов и их нагрузках; и 2)конфирматорным, предназначенным для проверки гипотез о числе факторов и их нагрузках (примечание 2). Практическое выполнение факторного анализа начинается с проверки его условий. В обязательные условия факторного анализа входят:
При анализе в один
фактор объединяются сильно коррелирующие
между собой переменные, как следствие
происходит перераспределение дисперсии
между компонентами и получается
максимально простая и
Сущностью факторного
анализа является процедура вращения
факторов, то есть перераспределения
дисперсии по определённому методу.
Вращение бывает ортогональным икосоугол
Главной проблемой
факторного анализа является выделение
и интерпретация главных
Практика показывает,
что если вращение не произвело существенных
изменений в структуре
Факторы имеют две характеристики: объём объясняемой дисперсии и нагрузки. Если рассматривать их с точки зрения геометрической аналогии, то касательно первой отметим, что фактор, лежащий вдоль оси ОХ, может максимально объяснять 70 % дисперсии (первый главный фактор), фактор, лежащий вдоль оси ОУ, способен детерминировать не более 30 % (второй главный фактор). То есть в идеальной ситуации вся дисперсия может быть объяснена двумя главными факторами с указанными долями[4]. В обычной ситуации может наблюдаться два или более главных факторов, а также остаётся часть неинтерпретируемой дисперсии (геометрические искажения), исключаемая из анализа по причине незначимости. Нагрузки, опять же с точки зрения геометрии, есть проекции от точек на оси ОХ и ОУ (при трёх- и более факторной структуре также на ось ОZ). Проекции — это коэффициенты корреляции, точки — наблюдения, таким образом, факторные нагрузки являются мерами связи. Так как сильной считается корреляция с коэффициентом Пирсона R ≥ 0,7, то в нагрузках нужно уделять внимание только сильным связям. Факторные нагрузки могут обладать свойством биполярности — наличием положительных и отрицательных показателей в одном факторе. Если биполярность присутствует, то показатели, входящие в состав фактора, дихотомичны и находятся в противоположных координатах[1].