Автор работы: Пользователь скрыл имя, 24 Декабря 2010 в 01:25, лабораторная работа
Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования деятельности 30-ти предприятий и частично использует результаты ЛР-1.
В ЛР-2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х) и результативным признаком Выпуск продукции (признак Y), значениями которых являются исходные данные ЛР-1 после исключения из них аномальных наблюдений.
ВСЕРОССИЙСКИЙ
ЗАОЧНЫЙ ФИНАНСОВО-
КАФЕДРА
СТАТИСТИКИ
О Т Ч Е Т
о результатах выполнения компьютерной лабораторной работы
Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel
Вариант
№85
Выполнил: ст. III курса вечерняя группа, специальности Финансы и Кредит Хоромина Ю.В.
Проверил: Новокупова
И. Н.
Владимир 2010 г.
Корреляционно-
В
ЛР-2 изучается взаимосвязь между
факторным признаком Среднегодо
Исходные данные | ||
Номер предприятия | Среднегодовая стоимость основных производственных фондов, млн.руб. | Выпуск продукции, млн. руб. |
1 | 4688,00 | 4480,50 |
2 | 5514,50 | 4915,50 |
3 | 5688,50 | 5481,00 |
4 | 5993,00 | 6090,00 |
5 | 3905,00 | 3045,00 |
6 | 6297,50 | 5220,00 |
7 | 6471,50 | 7047,00 |
8 | 4862,00 | 4785,00 |
9 | 5949,50 | 5611,50 |
10 | 6863,00 | 7003,50 |
11 | 7515,50 | 7395,00 |
13 | 5732,00 | 5829,00 |
14 | 6297,50 | 6351,00 |
15 | 7211,00 | 7699,50 |
16 | 8255,00 | 8265,00 |
17 | 6167,00 | 5568,00 |
18 | 6819,50 | 6612,00 |
19 | 5427,50 | 4132,50 |
20 | 6906,50 | 5655,00 |
21 | 7689,50 | 7612,50 |
22 | 5297,00 | 4306,50 |
23 | 4209,50 | 4045,50 |
24 | 7037,00 | 6481,50 |
25 | 6297,50 | 5655,00 |
26 | 5862,50 | 5350,50 |
27 | 4557,50 | 3480,00 |
28 | 6123,50 | 5437,50 |
29 | 7080,50 | 5959,50 |
30 | 6732,50 | 5655,00 |
32 | 4949,00 | 5046,00 |
В процессе статистического исследования необходимо решить ряд задач.
а) значимость
и доверительные интервалы
б) индекс детерминации R2 и его значимость;
в) точность регрессионной модели.
а) коэффициента регрессии а1;
б) коэффициента эластичности КЭ;
в) остаточных величин εi.
2. Выводы по результатам выполнения лабораторной работы1
Задача 1. Установление наличия статистической связи между факторным признаком Х и результативным признаком Y графическим методом.
Статистическая связь является разновидностью стохастической (случайной) связи, при которой с изменением факторного признака X закономерным образом изменяется какой–либо из обобщающих статистических показателей распределения результативного признака Y.
Вывод:
Точечный график связи признаков (диаграмма рассеяния, полученная в ЛР-1 после удаления аномальных наблюдений) позволяет сделать вывод, что имеет место статистическая связь. Предположительный вид связи – нелинейная прямая.
Задача 2. Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки.
Корреляционная связь – важнейший частный случай стохастической статистической связи, когда под воздействием вариации факторного признака Х закономерно изменяются от группы к группе средние групповые значения результативного признака Y (усредняются результативные значения , полученные под воздействием фактора ). Для выявления наличия корреляционной связи используется метод аналитической группировки.
Вывод:
Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением значений факторного признака Х закономерно увеличиваются средние групповые значения результативного признака . Следовательно, между признаками Х и Y существует корреляционная связь.
Задача 3.Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения.
Для анализа тесноты связи между факторным и результативным признаками рассчитывается показатель η – эмпирическое корреляционное отношение, задаваемое формулой
,
где и - соответственно межгрупповая и общая дисперсии результативного признака Y - Выпуск продукции (индекс х дисперсии означает, что оценивается мера влияния признака Х на Y).
Для качественной оценки тесноты связи на основе показателя эмпирического корреляционного отношения служит шкала Чэддока:
Значение η | 0,1 – 0,3 | 0,3 – 0,5 | 0,5 – 0,7 | 0,7 – 0,9 | 0,9 – 0,99 |
Сила связи | Слабая | Умеренная | Заметная | Тесная | Весьма тесная |
Результаты выполненных расчетов представлены в табл. 2.4 Рабочего файла.
Вывод:
Значение коэффициента η =0,9 , что в соответствии с оценочной шкалой Чэддока говорит о весьма тесной связи изучаемых признаков.
Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа и оценка тесноты связи на основе линейного коэффициента корреляции r.
4.1.
Построение регрессионной
Инструмент Регрессия на основе исходных данных (xi , yi), производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии , а также вычисление ряда показателей, необходимых для проверки адекватности построенного уравнения исходным (фактическим) данным.
Примечание. В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком.
Вывод:
Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0 и а1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения -11,18+ 1,08х.
4.2. В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r.
Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин "Множественный R").
Вывод:
Значение коэффициента корреляции r = 0.91, что в соответствии с оценочной шкалой Чэддока говорит о весьма тесной связи изучаемых признаков.
Задача 5. Анализ адекватности и практической пригодности построенной линейной регрессионной модели.
Анализ
адекватности регрессионной модели
преследует цель оценить, насколько
построенная теоретическая
Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков X и Y выполняется в 4 этапа:
Так как коэффициенты уравнения а0 , а1 рассчитывались, исходя из значений признаков только для 30-ти пар (xi , yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1. Поэтому необходимо:
Для анализа коэффициентов а0, а1 линейного уравнения регрессии используется табл.2.7, в которой:
– значения
– рассчитанный
уровень значимости
– доверительные
интервалы коэффициентов с
5.1.1. Определение значимости коэффициентов уравнения
Уровень значимости – это величина α=1–Р, где Р – заданный уровень надежности (доверительная вероятность).