Автор работы: Пользователь скрыл имя, 11 Апреля 2012 в 21:31, реферат
Главным направлением при производстве электронных модулей остается снижение себестоимости сборки и монтажа печатных плат при поддержании стабильно высокого уровня качества. Операция установки компонентов на печатную плату во многом определяет экономичность и производительность этого процесса.
УСТАНОВКА КОМПОНЕНТОВ НА ПЕЧАТНЫХ ПЛАТАХ
Все вещи таковы, каков дух того, кто ими владеет. Если он умеет ими пользоваться, они хороши. Если не умеет – плохи.
Публий Теренций. Римский комедиограф. II в. до н.э.
Отсюда следует, что если автомат вывалил кучу брака, пинать его не стоит. Лучше проверьте, где Вы так бездарно помешали ему.
Содержание:
Главным направлением при производстве электронных модулей остается снижение себестоимости сборки и монтажа печатных плат при поддержании стабильно высокого уровня качества. Операция установки компонентов на печатную плату во многом определяет экономичность и производительность этого процесса. Автоматические системы для сборки электронных модулей во все большей степени ориентируются на программное обеспечение. Это компьютеризированная техника, управляемая мощными контроллерами, способными обработать большой объем информации в реальном времени, с широким спектром функций. Безусловно, как механические, так и программные функции оборудования становятся более сложными, но задача состоит в том, чтобы обеспечить даже более простое управление как отдельной машиной, так и комплексной линией на уровне оператора.
Производство печатных плат на стадии сборочно-монтажных операций включает в себя следующие основные этапы:
- подготовка компонентов и материалов;
- нанесение адгезива (клея) и паяльной пасты;
- установка компонентов;
- отверждение клея;
15.1. Компоненты для установки на печатных платах [4]
Известны два основных варианта конструкций узлов на ПП:
- с использованием монтажных отверстий на ПП для установки компонентов, имеющих выводы (традиционный монтаж),
- с установкой компонентов на поверхности ПП без применения монтажных отверстий (поверхностный монтаж).
На практике
встречается несколько
1. Тип I – на двух сторонах платы размещаются только поверхностно-монтируемые компоненты, тип пайки на обеих сторонах – оплавление дозированно нанесенной припойной пасты;
2. Тип II – с использованием на лицевой стороне поверхностно-монтируемых и выводных, устанавливаемых в отверстия, на обратной стороне размещаются только пассивные чип-компоненты, обратная сторона паяется волной припоя;
3. Тип III – на лицевой стороне только выводные компоненты, на обратной – только пассивные чип-компоненты, вся плата паяется волной припоя.
Рис. 15.1.1.
В зависимости от конструкции корпуса компонента и формы выводов можно выделить три основных группы компонентов:
1. Поверхностно-монтируемые компоненты (surface mount component - SMC или surface mount device - SMD). К этой группе относятся пассивные компоненты (резисторы, конденсаторы, индуктивности) в корпусах, не имеющих выводов (0805, 0603, MELF), ИМ и другие полупроводниковые приборы в базовых технологических корпусах SO, PLCC, OFP, BGA, TAB, flip-chip, COB, DCA, а также компоненты, аналогичные по исполнению.
2. Выводные компоненты (Pin Through Hole – PTH или Through Hole Assembly - THA). Группа включает традиционные пассивные и активные компоненты с осевыми (аксиальными) и радиальными выводами, а также интегральные схемы в корпусах типа DIP (Dual in-line Package).
3. Нестандартные компоненты (Odd Form Component - OFC). К этой группе относятся выводные компоненты, не вошедшие во 2 группу, и включающая в себя соединители, разъемы, трансформаторы, колодки, держатели, экраны и т.д. Группа является самой динамичной, так как усилиями производителей ряд нестандартных компонентов либо становятся поверхностно-монтируемыми, либо переходят в категорию стандартных аксиально-радиальных.
Пассивные компоненты для поверхностного монтажа изготавливаются в двух модификациях: в виде цилиндра (тип MELF – Metal Electrode Face bonding) и чипа (параллелепипеда).
Рис. 15.1.2.
Внешний вид чип-резистора для поверхностного монтажа приведен на рис. 15.1.2. Его конструкция представляет собой прямоугольный параллелепипед с металлизированными боковыми поверхностями, которые играют роль внешних выводов и используются для пайки. На поверхность керамической подложки наносится методами толстопленочной технологии резистивная пленка, которая и выполняет функции резистора.
Стандартное
обозначение пассивных чип-
Керамические чип-конденсаторы представляют собой структуру из чередующихся диэлектрических слоев керамики и металлических пленок, замыкающихся на боковые выводы-электроды. Внешне они мало отличается от чип-резисторов. Из-за многослойной структуры керамические конденсаторы восприимчивы к тепловому удару, поэтому скорость предварительного нагрева при пайке не должна превышать 2 °С/сек., а разница температур между конденсатором и ванной с расплавленным припоем не должна превышать 100°С.
Примерно в таком же виде изготавливаются и другие компоненты: индуктивности, танталовые конденсаторы, а также некоторые типы диодов. Большое разнообразие видов и номиналов компонентов при небольшом различии конструкций их корпусов имеет важнейшее значение, поскольку позволяет использовать унифицированное оборудование для установки компонентов на поверхность ПП.
Интегральные компоненты. Значительно большее разнообразие конструкций корпусов наблюдается у микросхем. Можно выделить 4 типа корпусов:
1. С вертикальными
выводами, расположенными
2. С плоскими выводами, выходящими параллельно корпусу ИМ (Flat Pack – SO, PLCC, QFP, TAB).
3. Безвыводные
корпуса (металлизация
4. С шариковыми выводами на нижней плоскости корпуса (BGA – Ball Grid Array, flip-chip).
Конструкция корпусов ИМ первой группы характерна для традиционного монтажа, поскольку требует наличия на плате установочных отверстий, в которые микросхема запаивается, или так называемых «кроваток» - установочных панелей, в которые микросхема вставляется без пайки.
Рис. 15.1.3.
Корпуса DIP изготавливаются с шагом выводов 2,5 мм, количество выводов от 16 до 64, масса от 1 до 12 г. Корпуса PGA применяются для микропроцессоров и ИМ высокой степени интеграции. Как правило, они весьма дороги и устанавливаются в «кроватки» (socket). Шаг между выводами не менее 2,5 мм, количество выводов от 68 до 387. На корпусе могут располагаться пассивные чип-компоненты для развязки электрических цепей. Корпуса PGA изготавливаются из керамики или пластмассы и используются, как правило, с принудительным охлаждением (вентилятор на верхней крышке). При большом количестве выводов микросхемы имеют существенные массо-габаритные показатели (масса до 84 г, размеры до 66х66 мм).
Рис. 15.1.4.
Вторая группа корпусов (рис. 15.1.4) – самая распространенная, имеет много подвидов. Отметим две разновидности группы.
1. Собственно FP – прямоугольная или квадратная плоская упаковка (QFP). Выводы расположены с двух или четырех сторон, количество выводов – от 6 до 304, шаг выводов – от 1,27 мм до 0,25 мм, габариты корпуса на плате (длина и ширина) – от 5х5 мм (32 вывода при шаге 0,5 мм) до 40х40 мм (304 вывода, шаг 0,5 мм).
Для QFP процесс нанесения припойных паст методами трафаретной печати на контактные площадки ПП остается самым критическим процессом, вызывающим снижение коэффициентов воспроизводимости сборочной системы. Это приводит к усложнению относительно простых автоматических станков для трафаретной печати, поскольку в таких автоматах не обойтись без автоматического оптического контроля количества и качества нанесения припойной пасты. Особое внимание для этих корпусов уделяется аккуратному обращению при формовке его выводов, тестировании и транспортировке на сборку: для шагов выводов 0,635 мм и менее толщина выводов небольшая и они легко деформируются.
2. TAB (Tape Automated Bonding, или ТСР – Tape Carrier Package) – в технологии TAB кремниевые кристаллы крепятся к полимерной ленте, на которую нанесены металлические пленочные проводники, формирующие внутренние соединения выводов кристалла. Присоединение выводов чипа к сборке следующего уровня (печатной плате) достигается при помощи внешних выводов полимерной ленты. Для соединения внешних выводов TAB с подложкой обычно используются методы контактной пайки, пайки горячим газом или лазерной микросварки. Сборка очень компактна, высота не превышает 0,75 мм. 320-выводной корпус с шагом выводов 0,25 мм весит не более 0,5 г и имеет габариты 24х24 мм. Для сравнения: 296-выводной пластиковый QFP корпус весит 9,45 г. Технология TAB освоена ограниченным кругом ведущих технологических фирм мира.
Рис. 15.1.5.
Третий тип корпусов – LCCC (безвыводные керамические или пластиковые кристаллоносители, рис. 15.1.5). Выполняется корпус из пластика или керамики. Количество выводов – от 5 до 84. Шаг выводов от 1,27 мм до 0,5 мм. Отсутствие выводов позволяет увеличить плотность компоновки узлов. Несколько более затруднен контроль паяных соединений корпуса с контактными площадками ПП, поскольку часть паяного соединения находится под корпусом микросхемы. Кроме того, для корпусов больших размеров актуальными становятся дефекты паяных соединений, вызванные усталостным разрушением металла припоя из-за термоциклирования в процессе эксплуатации изделия.
Рис. 15.1.6.
Четвертый тип корпусов для ИМ (рис. 15.1.6) – компоненты BGA (Ball Grid Array – шариковые выводы с матричным расположением) и технология CSP (Chip-Scale Packages), флип-чип (flip chip). Отличительной чертой корпусов является наличие контактов на нижней плоскости корпуса в виде шариковых выводов. Такая конструкция корпуса позволила увеличить шаг выводов, и для большинства корпусов он составляет 1,0 или 1,27 мм, что упрощает разводку проводников на ПП. Количество выводов корпуса от 36 до 2401, при этом габариты от 7х7 до 50х50 мм. Высота корпуса не превышает 3,5 мм. Кроме того, шариковые выводы на основе SnPb сплава дали удивительное послабление технологам при выполнении операций установки корпуса на плату: неточность попадания выводов на контактную площадку ПП может составлять до 50%! Все дело в том, что при оплавлении припойной пасты на контактных площадках во время пайки за счет сил поверхностного натяжения расплавленного припоя происходит самоцентрирование корпуса микросхемы.
Недостатком корпусов типа BGA является затрудненный контроль операции пайки и ремонт узлов. Для контроля соединений BGA в узле используются чаще всего рентгеновское оборудование. В последние годы инфраструктура BGA развивалась стремительно, и сейчас известно много видов этого типоразмера, включая пластиковые, керамические, металлические, и другие, а также микро-BGA, напоминающие собой открытые кристаллы. BGA предпочтительнее там, где количество каналов ввода/вывода ИС превышает 256.
Рис. 15.1.7.
CSP обычно
определяется как компонент,
Технология флип-чип представляет собой Si-кристалл, непосредственно устанавливаемый на коммутационную подложку узла (например, ПП) лицевой стороной вниз, на которой выполнены внешние контакты в виде припойных шариков из более тугоплавкого сплава, чем SnPb. Из-за того, что выводы формируются на кремниевом кристалле микросхемы, шаг выводов является очень малым и составляет 0,152 мм, что приводит к усложнению ПП. Преимущества технологии:
- экономия места на ПП;
- малые габариты
и вес узла с такими
- снижение стоимости материалов (у кристалла нет корпуса);
- сокращение
длины электрических
- меньшее
количество соединений, что сокращает
количество потенциальных
Технология популярна в последние годы, но имеет и свои недостатки:
- дороговизна
технологии формирования
- чрезвычайно
плотная разводка платы под
посадочное место для флип-
- больший объем работы технологов по оптимальному выбору флюсующих веществ и адгезивов в зависимости от вида флип-чипа, подложки и процесса;
- трудности
контроля качества в
Нестандартные и выводные компоненты. Автоматизация сборки на платы нестандартных компонентов весьма дорога из-за их малого количества на плате и большого разнообразия типов конструкций. Однако последние годы автоматизация процессов, связанных с нестандартными компонентами, развивается весьма активно, что приносит производителям электронных модулей существенные преимущества. Быстро развивается инфраструктура поддержки данного направления технологии. Разрабатываются новые типы корпусов, близкие по формам к стандартным, которые способны выдерживать высокие температуры при пайке оплавлением припойных паст. В последнее время электронная промышленность мира быстро движется к установлению единых стандартов сборочно-монтажных технологий при использовании нестандартных компонентов.
Информация о работе Установка компонентов на печатных платах